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Abstract

Fracture of compliant materials is preceded by large deformations that

reshape initially sharp cracks into rounded defects. This phenomenon, known

as elastic crack blunting, is peculiar of rubber-like polymers and soft biologi-

cal tissues, such as skin, vessel walls, and tendons. With this work, we aim to

provide a discussion on crack-tip blunting and its implications in terms of

tearing resistance and flaw tolerance of soft elastic materials. The characteris-

tic features of the crack-tip zone in the framework of nonlinear elasticity are

reviewed analytically and with the help of finite element analyses on pure

shear cracked geometries. Specifically, the strain-hardening behavior typical

of soft biological tissues is addressed, and we illustrate its effect on crack-tip

blunting, in terms of a local radius of curvature at the crack tip. A simplified

geometrically nonlinear model, proposed to describe the progressive blunting

at the crack tip and its effect on flaw tolerance, is validated through finite ele-

ment analyses and experimental tests on silicone samples. We show how this

can lead to a simplified criterion to define the fracture condition in nonlinear

soft materials.
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1 | INTRODUCTION

Soft materials represent a large class of natural and
engineered compounds, such as polymers, gels, foams,
colloids, and the majority of the tissues in living
beings.1 Although their microstructure can be quite
diverse, they share the common feature of being highly
compliant when subjected to mechanical or thermal
stimuli. This unique capability has various important
implications, which explains the large research interest
in the fields of solid mechanics, material science and

bioengineering toward soft materials.2,3 In this work, we
focus on the implications of the compliance of soft
materials in terms of the fracture process. Taking
advantage of the similarity in the elastic behavior
between biological tissues and soft polymers,4 we aim to
explore concepts and applications of actual relevance in
the biomedical field, such as cutting and puncturing of
soft tissues during surgery.5,6

Fracture mechanics of soft materials are drastically
different from traditional engineered materials, such
as glass or metals, and contradict the grounding
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assumptions of linear elastic fracture mechanics (LEFM).
When considering the region around the tip of a crack in
a soft material, large deformations become relevant on
scales comparable to the characteristic macroscale geom-
etry.2,7 This prevents the approximation to the linearized
theory of elasticity on which LEFM is grounded. As a
consequence, the description of the crack-tip displace-
ment and stress fields follows a drastically different math-
ematical treatment, as systematically analyzed in the
pioneering research of Knowles and Sternberg.8 At the
same time, the energy-based description of fracture
retains its validity for any material where dissipation is
confined to a negligible process zone. Along this line,
Rivlin and co-workers9,10 established the framework on
which theoretical and experimental fracture mechanics
of soft materials is still based today.

The peculiarity of the crack-tip region in soft mate-
rials has been comprehensively reviewed by Long et al,11

while a recent review of fracture in soft elastic materials
can be found in the authors' work.12 The asymptotic
stress field is drastically different from that of LEFM and
is strongly affected by strain hardening. Strain hardening
is observed in certain class of rubbers and becomes par-
ticularly relevant in collagenous soft tissues.13 It has
important influences in the stress distribution around the
tip of a crack and has been found to influence the mecha-
nism of crack propagation.11 Another distinctive aspect
of the fracture process of soft materials is the transition
from a sharp crack to a blunted notch before propaga-
tion, a phenomenon that goes under the name of elastic
crack blunting.14 Blunting mitigates the effect of stress
concentrations caused by cracks and can be correlated to
the remarkable property of flaw tolerance. This is defined
as the insensitivity of a material to cracks and defects and
has been recently investigated experimentally and
numerically.3,15

In the present work, we briefly summarize the ana-
lytical crack-tip fields in nonlinear elastic materials,
focusing in particular on a class of isotropic exponential
strain-hardening models commonly applied to elasto-
mers and biological tissues. Through refined finite ele-
ment (FE) analyses at the crack tip, we obtain the
deformed profiles of the crack under mode I loading and
compute a local radius of curvature at the crack tip,
which provides a measure of the elastic blunting of the
crack under loading. In order to investigate the implica-
tions of this blunting on crack propagation and flaw tol-
erance, we apply a recently proposed geometrically
nonlinear model12 and compare its predictions to experi-
ments on silicone specimens containing cracks. The final
discussion attempts to highlight the relevance of nonli-
nearity and blunting in order to understand fracture of
soft tissues.

2 | CRACK-TIP FIELDS IN
NONLINEAR ELASTICITY

In this section, we review the basics of the analytical
formulation and present some results from FE analyses
of the crack-tip fields in nonlinear elasticity. The reader
is referred to Long et al11 and references therein for a
more complete overview. The theoretical background
concerning finite strain continuum mechanics and
hyperelasticity of soft tissues is also briefly
summarized.

2.1 | Strain hardening hyperelasticity in
isotropic incompressible solids

Rubber-like materials and soft biological tissues are char-
acterized by large deformations, ruling out the applica-
tion of the linearized theory of elasticity on which LEFM
is based. Deformation can be described by the nonlinear
mapping χ, such that x¼ χðXÞ, where X and x denote
the position of a material point in the initial (reference)
and deformed (current) configurations. Accordingly,
the deformation gradient FðXÞ is a two-point tensor
defined as FðXÞ¼ ∂χðXÞ=∂X .16 Various definitions of
strain exist in nonlinear mechanics. Here, we adopt the
symmetric left Cauchy–Green strain tensor b¼F �FT,
which represents the deformation measure in the current
configuration. Let us now consider an isotropic hypere-
lastic material and postulate the existence of a strain-
energy function expressed in terms of the principal
invariants of b

I1 ¼ b : I, I2 ¼ J2b�1 : I, I3 ¼ det b, ð1Þ

where J ¼ detF is the volume ratio and I is the second-
order identity tensor. Introducing the assumption of
material incompressibility, which applies with good
approximation to rubber-like and biological materials,
the strain-energy function is written as

Ψ ¼ Ψ̂ ½I1ðbÞ, I2ðbÞ��pðJ�1Þ, ð2Þ

where p serves as Lagrange multiplier to enforce
incompressibility.

In the following, we focus on a strain-energy func-
tion, which depends on the first strain invariant only
and can be employed to model the effect of strain hard-
ening, that is, the nonlinear increase of stress with
deformation observed in biological tissues.17 The expres-
sion, known as generalized neo-Hookean (GNH) model,
is given by8

2 SPAGNOLI ET AL.
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Ψ̂ ½I1ðbÞ;μ,b,n� ¼ μ

2b
1þ b

n
ðI1�3Þ

� �n
�1

� �
, ð3Þ

where μ is the initial shear modulus and b,n are material
parameters. Note that n>0 is the parameter controlling
strain hardening, with n¼ 1 corresponding to the well-
known neo-Hookean formulation.

A standard procedure leads to the fundamental con-
stitutive equation of isotropic nonlinear elasticity directly
expressed in terms of the left Cauchy-Green strain tensor,
such that the Cauchy stress tensor is16

σ¼ 2b � ∂Ψ̂
∂b

�pI¼ J�1ψ1b�pI, ð4Þ

where the stress coefficient for the GNH model is
ψ1 ¼ 2∂Ψ̂ ðI1Þ=∂I1 ¼ μ 1þ b

nðI1�3Þ� �ðn�1Þ
.

To illustrate the stress–strain curve of the GNH
model, a pure shear deformation is considered, which is
defined by the following deformation gradient

F¼ e1�E1þλe2�E2þλ�1e3�E3, ð5Þ

where ei,EI , with i,I ¼ 1,2,3, represent the unit vectors of
the current and reference Cartesian bases. The dimen-
sionless reduced Cauchy stress ~σ22 ¼ σ22=μðλ2� λ�2Þ,
obtained analytically for a plane stress case (σ33 ¼ 0), is
shown in Figure 1 as a function of the stretch λ.

2.2 | Analytical crack-tip fields in plane
stress

We briefly review here the analytical solutions for
the crack-tip fields in a two-dimensional plane stress
problem for a GNH material, originally derived by
Geubelle and Knauss18 and more recently elaborated by
Long et al.19

Let us start by considering a a thin sheet of hyperelas-
tic material containing a crack. A local reference system
X1,X2 is centered at the tip, so that the crack faces are
coincident with the line X1 < 0,X2 ¼ 0 in the initial con-
figuration (Figure 2A). Upon loading, the crack faces

FIGURE 1 Dimensionless Cauchy stress ~σ22 against stretch λ

in the GNH model, with b¼ 1 and n¼ 0:6�4 for a pure-shear

planar deformation. 1-col figure [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 (A) Sketch of the pure-shear geometry adopted in FE analyses of the crack-tip fields in the reference and current

configurations, with local axes centered at the crack tip. (B) Detail of the FE mesh defined in the crack-tip region, used to infer the stress

singularities (type a) and for the crack-tip blunting (type b). 2-col figure [Colour figure can be viewed at wileyonlinelibrary.com]
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open up and points in the deformed configuration can be
referred to the current coordinates of the translated crack
tip, defined as

yiðXÞ¼ xiðXÞ� xiðX ¼ 0Þ, i¼ 1,2, ð6Þ

where X ¼ 0 indicates the coordinates of the crack tip in
the reference configuration. The hypothesis of a symmet-
ric opening crack (Mode I) is expressed by y1ðX1,X2Þ¼
y1ðX1, �X2Þ and y2ðX1,X2Þ¼�y2ðX1, �X2Þ. We also
introduce a planar cylindrical reference system r,ϑ, with
r¼ ffiffiffiffiffiffiffiffiffiffi

XiXi
p

and ϑ¼ tan�1ðX2=X1Þ. The crack-tip displace-
ment field can be written in a separable form for r! 0 as

yi ¼ rpigiðϑ,nÞþoðrpiÞ, i¼ 1,2, �π ≤ ϑ≤ π, ð7Þ

where the symbol o is here used to denote higher order
terms in the asymptotic expansion. In (7), pi represents
the order of the crack-tip singularity, with the
condition p1 > p2. The angular functions giðϑ,nÞ must
respect symmetry: Specifically, g1ðϑ,nÞ is an even
function, implying that g1ðϑ¼ π,nÞ¼ g1ðϑ¼�π,nÞ;
g2ðϑ,nÞ is an odd function, with g2ðϑ¼ 0,nÞ¼ 0 and
g2ðϑ¼ π,nÞ¼�g2ðϑ¼�π,nÞ. Furthermore, the parame-
ter n must satisfy the requirement n>0:5 to ensure the
ellipticity of the equilibrium equations of the elastic prob-
lem. The complete expressions of the crack-tip displace-
ments are19

y1 ¼
C1rdg1 ϑ,nð Þ ifn<1:46

C1r 1þ1=4nð Þ~g1 ϑ,nð Þ ifn>1:46

(
, ð8aÞ

y2 ¼C2r
1�1=2nð Þg2 ϑ,nð Þ, ð8bÞ

where C1,C2 > 0 are amplitudes that depend on the
specimen geometry and loading conditions, while the
expression of the exponent d<1þ1=4n was computed by
Geubelle and Knauss.18 The angular even functions in
Equation (8a), g1ðϑ,nÞ and ~g1ðϑ,nÞ, are different depend-
ing on whether the material parameter n is less or greater
than 1.46, respectively.

Turning our attention to the crack-tip stress field, the
normal and parallel Cauchy stress components are char-
acterized by the following asymptotic expressions with
respect to the cylindrical reference coordinates

σ22 ¼ μ
bn�1

nn
2n�1
2n

	 
2n

C2n
2 f 22ðϑ,nÞr�1, ð9aÞ

σ11 ¼
O r2d�3þ1=n
� �

ifn<1:46

O r�1þ3=2n
� �

ifn>1:46

(
, ð9bÞ

where the Landau symbol O identifies the asymptotic
behavior of the stress component and f 22ðϑ,nÞ is an even
angular function19 Equation (9) shows that the asymp-
totic normal Cauchy stress σ22 is controlled by a single
amplitude parameter C2. As pointed out by Long et al,19

this can be determined from a closed-form expression by
computing the path-independent J-integral.

2.3 | FE analyses of the crack-tip region

We have employed FE analyses to obtain a complete map
of the deformation and stress fields in the crack-tip
region. A pure-shear geometry, often adopted in fracture
testing of rubber-like materials,9 was considered, consist-
ing of a long thin strip of height 2h and width w¼ 10h,
with an edge crack a¼ 2:5h (Figure 2A). A uniform dis-
placement Δ is imposed in the direction parallel to the
short edges, such that λ¼ 1þΔ=h defines the applied
stretch. The specimen thickness is negligible with respect
to other dimensions so that a state of plane stress is
assumed. Due to symmetry, only half geometry can be
modeled and pertinent constraints were added to the
lower edge of the specimen. Mesh design is particularly
critical in order to capture the asymptotic behavior of the
crack-tip fields.20 We have used eight-node plane stress
elements to mesh the far-field domain, and a refined fan-
shaped mesh zone of radius rref ¼ 0:1h, centered at the
crack tip (Figure 2B). The solution accuracy is ensured by
a proper choice of the characteristic element size hel and
of the angular span Δθ. In this work, the smallest element
size was taken equal to hel ¼ 10�5h and the angular span
was Δθ¼ 5 ∘ . The model was solved using the implicit
static solver of the commercial FE software Abaqus. The
GNH model (3) was implemented through a user-defined
material subroutine.

The crack-tip displacement field obtained from the
FE analyses is illustrated in Figure 3A. The crack flank
profile is obtained from the deformed coordinates of
points located at ϑ¼ π within the region of reference
radius rref , for a pure-shear stretch λ¼ 1:5. The results
show a remarkable influence of the strain hardening
parameter n. In particular, the GNH model for n! 0:5
displays an enhanced phenomenon of crack-tip blunting
that progressively mitigates at higher values of the
parameter n.18 Figure 3B quantifies the crack-tip blunting
through the variation of a local curvature as a function of
the stretch. The radius of curvature ϱ was computed
numerically from the deformed coordinates y1,y2 for ϑ¼
π as the radius of the best fitting circle within a distance
equal to 10�3h from the crack-tip. To further appreciate
the effect of strain hardening on the local curvature, the
ratios between the crack-tip radius at λ¼ 1:5 and that at

4 SPAGNOLI ET AL.
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λ¼ 1:1 was computed. An increase by almost 70 times for
n¼ 0:6, in contrast to a fivefold rise when n¼ 4, can be
observed. As a comparison, the solution for LEFM is also
added to Figure 3. Accordingly, the crack-tip radius
evolves with the stretch as

ϱ¼ 4
π
hðλ�1Þ2, ð10Þ

which is derived from the expression of an elliptical crack
flank, ϱ¼ 4=πð Þ K=Eð Þ2 with K ¼ ffiffiffiffiffiffiffi

GE
p ¼E λ�1ð Þ ffiffiffi

h
p

being the energy release rate G¼Ehðλ�1Þ2, for the pure-
shear configuration under consideration.21

The normalized Cauchy stress components σ11=μ and
σ22=μ obtained from FE analyses are illustrated in
Figure 4, corresponding to ϑ¼ 0 and a pure-shear stretch
λ¼ 1:5. The stress values were extracted from integration
points of elements ahead of the crack tip enclosed in the
circular region of reference radius rref , extrapolated to the
nodes and plotted on a double logarithmic plot as a func-
tion of the reference distance r=h. The order of the

singularity predicted by (9) is represented in each plot by
lines that were fitted to the numerical points.

3 | MODEL OF CRACK-TIP
BLUNTING

A model to describe the crack-tip blunting was recently
proposed by the authors.12 Below, we briefly summarize
this approach and compare its predictions with
experiments and FE analyses.

3.1 | Analytical formulation

Within the framework of LEFM, we can consider crack-
tip blunting in terms of the reshaping of an initially sharp
crack in a linear elastic material. In particular, if we
assume that the crack evolves into an elliptical shape
after deformation, we can predict the local stress from
the pioneering works of Inglis on elliptical cracks.22 At
this point, we anticipate that, although developed for a
linear elastic material, the model proposed includes geo-
metric nonlinearity through an incremental update of the
deformed crack profile.

Let us consider an ellipse whose major and minor
semi-axes are denoted by a and b (Figure 5). The local
stress and displacements can be computed from the
general solution of an elliptical hole in an infinite elastic
plate.23 Adopting curvilinear elliptical coordinates ðξ, ηÞ,
the semiaxes are equal to a¼ c cosh ξ0 and b¼ c sinh ξ0,
where c¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�b2

p
is the focal distance and ξ¼ ξ0 ¼

acoshða=cÞ is the equation of the ellipse boundary. These
expressions hold for an ellipse with a> b, otherwise a
and b need to be exchanged. The complete solution is
available in the literature.24

We now consider the ellipse in an infinite plate
loaded remotely by a uniform stress σ. Loading is applied
in increments dσi and stress and displacements are com-
puted in the points of intersection with the reference axes
ðX1,X2Þ, denoted as Pmax ¼ PðX1 ¼ a,X2 ¼ 0Þ¼ Pðξ0,0Þ
and Pmin ¼PðX1 ¼ 0,X2 ¼ bÞ¼ Pðξ0,π=2Þ (Figure 5). The
deformed configuration of the ellipse is obtained by
updating the semiaxes according to the displacement
increments

ai ¼ ai�1þduimax , b
i ¼ bi�1þduimin , ð11Þ

where duimax and duimin are the incremental displace-
ments obtained from the solution of the elliptical hole in
the points Pmax and Pmin , respectively. Finally, the mini-
mum radius of curvature ϱi is computed from

FIGURE 3 (A) Crack-tip displacement field from FE analyses,

for ϑ¼ π and λ¼ 1:5. (B) Crack-tip radius in a region r=h¼ 10�3 as

a function of the stretch λ. The inset shows the ratios between the

crack-tip radius at λ¼ 1:5 and that at λ¼ 1:1. Also shown is the

LEFM solution (10) (dashed line). 1-col figure [Colour figure can be

viewed at wileyonlinelibrary.com]
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ϱi ¼ bi
� �2

=ai: ð12Þ

To obtain a parameter that can be used to
quantify the crack-tip blunting, we define a stress

concentration factor K t ¼ σmax=σ, where σmax is the
stress at the minimum radius of curvature of the
ellipse. For an elliptical notch in an infinite plate,
the incremental value of the stress concentration factor is
derived as22

Ki
t ¼

σimax

σi
¼ 1þ2

ffiffiffiffi
ai

ϱi

s
: ð13Þ

The illustrative results according to the analytical
model proposed are illustrated in Figure 6 (the relevant
parameters adopted in the illustrative example are:
E¼ 3μ¼ 1:12MPa, ν¼ 0:42,Gc ¼ 50J=m2, a¼ 10mm). We
have also added a comparison with a model of elastic
crack blunting proposed by Hui et al,14 where the
maximum notch root stress σmax as a function of the
applied stress σ is expressed as σmax ¼ 2σ= σ

EþC
� �

,
with C¼Gc=ðσ0aÞ, σ0 the strength of a cohesive crack
and Gc the material fracture energy. The mitigation of
the stress concentration factor at the blunted crack tip
with increasing applied stretch λ is illustrated in
Figure 6A, while Figure 6B shows the increase of the tip
radius with λ. The LEFM solution of a center-cracked
sample, described by

FIGURE 4 Crack-tip Cauchy stress

components from FE analyses with

respect to the normalized reference

distance r=h, for ϑ¼ 0 and λ¼ 1:5 (log

scale). GNH model with (A) n¼ 0:6,

(B) n¼ 1, (C) n¼ 2, (D) n¼ 4. Dashed

lines correspond to the asymptotic

trends predicted by the analytical

solution (9). 2-col figure [Colour figure

can be viewed at wileyonlinelibrary.

com]

FIGURE 5 Elliptical deformed configuration in curvilinear

elliptical coordinates. 1-col figure [Colour figure can be viewed at

wileyonlinelibrary.com]
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ϱ¼ 4aðλ�1Þ2, ð14Þ

is also plotted. Excellent agreement is shown by the
model proposed compared to FE analysis on a center-
cracked sample with linear elastic material and
geometric nonlinearity. Finally, Figure 6C describes the
increase of the peak stress at the blunted crack tip as a
function of the remote applied stress. Here, we observe
that the model by Hui et al14 exhibits an asymptotic
trend, whereas the present model shows an inflection
point corresponding to the inversion of the semiaxes of
the ellipse.

3.2 | Experiments on silicone samples

We have performed tensile experiments on silicone rub-
ber samples containing centered cracks of different
lengths, which were stretched under displacement
control with a constant nominal strain rate _ε¼ 10�3s�1

up to complete failure. All the mechanical tests were
performed using a universal testing machine Galdabini
Quasar 2.5, equipped with a 3-kN load cell, while
pictures are taken by means of a Basler acA5472-17uc
USB 3.0 camera.

3.2.1 | Material characterization

The first set of experiments is performed on samples
made of a commercial silicone rubber (Elite Double 32 by
Zhermack Dental). First, tensile specimens are manufac-
tured and tested at an average strain rate of _ε¼ 10�3s�1

in order to characterize the mechanical parameters of the
material. As shown in Figure 7A, the hyperelastic GNH

strain-energy function in (3) can be fitted to the experi-
mental uniaxial stress–strain curve taking b¼n¼ 1,
which corresponds to a neo-Hookean material model.
Considering incompressibility, the initial Young's modu-
lus is equal to E¼ 3μ¼ 1:22MPa. Further tests are con-
ducted on pure-shear specimens, at an average strain rate
of _ε¼ 1 �10�3s�1, in order to obtain the fracture energy.
In a pure-shear deformation, the fracture energy is inde-
pendent of the crack length and is simply computed as
Gc ¼ 2Ψ ðλcÞh,9 where Ψ ðλcÞ is the strain-energy per unit
volume (3) computed at λ¼ λc, with λc the failure stretch
of the pure-shear specimens (Gc ¼ 1:16N=mm, see
Figure 7B). A second set of experiments deals with sam-
ples made of a different commercial silicone rubber
(TSE3478T by Momentive), whose initial Young's modu-
lus is taken to be equal to E¼ 3μ¼ 1:12MPa
(Gc ¼ 1:0N=mm, estimated).25 Finally, a third set of
experiments is related to a polydimethylsiloxane (PDMS)
silicone (commercially named Sylgard 184), whose initial
Young's modulus is here found to be equal to E¼ 3μ¼
2:12MPa (Gc ¼ 1:3N=mm, estimated26).

3.2.2 | Tearing of center-cracked samples

A summary of the tests on center-cracked samples is pre-
sented in Table 1, reporting an identification code, the
geometry of the specimens and the failure stretch λc. A
sketch of the experimental setup is shown in Figure 8A.

Results of the experiments are illustrated in
Figure 8B–D. The experimentally obtained normalized
crack tip radius ϱ=a is plotted in Figure 8B as a function
of the stretch. A representative example of the experi-
ments is illustrated in Figure 9 for a CC1 specimen. The
analytical prediction obtained from the authors' model,

FIGURE 6 (A) Relative concentration factor as a function of the remote stretch. (B) Tip radius normalized with respect to the initial

crack length as a function of the remote stretch. The dashed line corresponds the LEFM solution (14). (C) Relative peak stress at the crack

tip versus relative remote stress. The blue curves are related to a model proposed by Hui et al.14 2-col figure [Colour figure can be viewed at

wileyonlinelibrary.com]
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together with the LEFM solution (14) and the model pro-
posed by Hui et al,14 are added as comparison. It appears
that the radius of curvature increases more rapidly in
comparison to the LEFM prediction as the initial crack
length gets larger.

Figure 8C plots the failure stretch λc as a function of
the characteristic length a of the initial crack. According

to LEFM, stretch at failure follows a decreasing power-
law dependence on the crack length, provided by21

λc � 1þ
ffiffiffiffiffiffi
Gc

πE

r
a�1=2, ð15Þ

where it was assumed that the remote stress is σ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GE=πa

p
and considering the failure criterion G¼Gc. In

Figure 8C, the best-fit curves with a power-law
dependence with exponent �0.5 are shown along with
the LEFM solution (15). The overall trend of experimen-
tal results seems to be well described by the power law
dependence of LEFM.

Finally, the experimental results are elaborated in
order to quantify the effect of crack blunting in terms of
failure. Let us define the quantity K tðλc�1Þ, where λc is
the ultimate stretch derived from the experiments
(Table 1) and K t is the stress concentration factor corre-
sponding to λc, computed from the analytical model (13).
The quantity K tðλc�1Þ represents the normalized true
stress at the notch root at incipient failure and can be
considered as an intrinsic material property, independent
of the presence of the flaw. The results are summarized
in Figure 8D.

4 | DISCUSSION

Within the framework of continuum mechanics, the frac-
ture process is connected to a length parameter, which
originates from the competition between surface energy
for crack propagation and bulk deformation energy.2 This
quantity, known in the literature as elasto-adhesive
length, represents the minimum length of a crack below
which failure becomes flaw-insensitive.3 This is a central
concept in fracture mechanics and becomes particularly
relevant with respect to soft materials, since it can be
related to the radius of a blunted crack-tip.2

In order to understand how crack blunting affects
fracture of soft materials, it is mandatory to account for
the nonlinearity associated with large deformation of the
crack. This aspect requires to analyze the crack-tip zone
according to the full nonlinear theory of elasticity. The
results reviewed in Section 2 provide a drastically differ-
ent picture with respect to linear elastic fracture mechan-
ics (LEFM). In particular, the crack-tip stress field is
dominated by a single component and is deeply affected
by the degree of strain hardening. As a consequence, the
crack-tip field might be characterized by a nearly hydro-
static state (where singularities of the stress components
have similar magnitudes) or by a uniaxial state (where
the opening stress has a stronger singularity). Even more
remarkable is the effect in terms of deformed crack

FIGURE 7 Mechanical characterization of the Elite Double

32 silicone. All the samples are tested at a nominal strain rate
_ε¼ 10�3s�1. (A) Dimensions (mm) of the tensile specimens and

model fitting of the experimentally obtained stress-stretch curve.

(B) Dimensions (mm) of the pure-shear specimens and

experimentally obtained stress-stretch curves. 1-col figure [Colour

figure can be viewed at wileyonlinelibrary.com]
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TABLE 1 Geometric characteristics of center-cracked silicone specimens with different crack lengths (w¼ specimen half width, h¼
specimen half height, t¼ specimen thickness, a¼ crack semi-length, h=w≈ 2 for all specimens)

ID wðmmÞ aðmmÞ tðmmÞ a=w λc

Elite Double 32

CC1 24.9 2 2.62 0.080 1.40

CC2 24.8 4 2.39 0.162 1.25

CC3 24.7 8 2.56 0.324 1.20

CC4 24.8 10 2.56 0.403 1.16

CC5 24.8 14 2.95 0.565 1.13

CC6 24.8 17 2.31 0.684 1.11

TSE3478T

CC7 56 10 2.75 0.179 1.75

CC8 56 15 3 0.268 1.61

CC9 56 20 2.75 0.357 1.55

CC10 56 25 2.85 0.446 1.32

Sylgard 184

CC11 28.4 7 2.54 0.247 1.09

CC12 27.9 12 3.07 0.431 1.08

CC13 28.2 18 2.57 0.639 1.06

FIGURE 8 (A) Experimental setup. (B) Crack tip radius against remote stretch at failure (experimental results for CC1–CC6 and CC11–
CC13 specimens). (C) Stretch at failure λc as a function of the initial crack semi-length a0. The continuous light red line corresponds to the

prediction of the LEFM solution (15) while the dashed lines represent the best-fit curves with a power law dependence with exponent �0.5.

(D) Normalized true stress at incipient failure versus initial crack semilength a0. The dashed lines represent the average values of K tðλc�1Þ.
2-col figure [Colour figure can be viewed at wileyonlinelibrary.com]
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profiles, with strain hardening leading to reduced blunt-
ing and high stress gradients concentrated in a small
region surrounding the crack-tip.

In terms of failure, blunting has major effects, which
can be appreciated with the model proposed. Although
derived for linear elasticity, the model seems to behave
accurately for large deformations when compared with
finite element simulations (Figure 6). Besides providing
a description of the evolution of the blunted crack-tip
with increasing deformation, the model can be used to
infer some conclusions on the failure condition in soft
materials. A normalized stress at the notch root provides
an adequate parameter for evaluating the failure of
cracked samples subjected to large deformation. Differ-
ently from the fracture-mechanics related quantities,
which show a dependence on the size of the crack, the
parameter proposed is a mechanical property of the
material. Furthermore, being related to the tip radius of
the blunted crack, it directly relates crack-tip blunting
with the concept of a flaw-insensitive failure. As a
matter of fact, the model gives a relation between the
peak stress at the crack tip or the tip radius and the
remote stretch: A critical condition of fracture can then
be identified by comparing these values with a cohesive
stress or with a material-related critical crack tip
displacement.

In this work, we have attempted to validate the model
through experiments on center-cracked silicone samples.
The crack-tip radius observed seems to be quite different
from the predictions of LEFM (Figure 8B). However, this
is not directly reflected in terms of the failure stretch,
which seems to follow the size dependent predictions of
LEFM (Figure 8C). We hypothesize that the failure crite-
rion based on the local stress, and hence the concept of a
flaw-insensitive failure, might become more appropriate
in tougher soft materials, where severe crack blunting is
developed before failure and the elasto-adhesive length is
larger.

5 | CONCLUSIONS

The present paper is devoted to the study of crack-tip
stress fields in soft materials. FE analyses were carried
out on pure-shear geometries considering incompressible
hyperelastic models with strain hardening. The analytical
asymptotic solutions are presented together with the
results obtained from FE analyses. The elastic crack-tip
blunting under loading is quantified by a local radius of
curvature at the crack tip, which is found to strongly
depend on the degree of strain hardening. A geometric
nonlinear analytical model, introduced to describe the
progressive blunting of the crack tip in a linear elastic
material under remote mode I loading, is compared to
experimental results on center-cracked silicone speci-
mens. The model provides a condition, alternative to
LEFM, to identify the critical condition of crack propaga-
tion in soft materials.
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