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Liquid crystalline elastomers (LCEs) represent a
promising class of responsive polymers whose
physical properties are peculiar to both fluids
and solids. Thanks to their microscale structure
made of elongated rigid molecules (mesogens)—
characterized by their capability to reversibly switch
from an isotropic to an ordered state—LCEs exhibit
a number of remarkable physical effects, such as
self-deformation and mechanical actuation triggered
by external stimuli. Efficient and physics-based
modelling, aimed at designing and optimizing LCE-
based devices (such as artificial muscles, deployable
structures, soft actuators, etc.), is a fundamental
tool to quantitatively describe their mechanical
behaviour in real applications. In the present study,
we illustrate the multi-physics modelling of light-
driven deformation of LCEs, based on the photo-
thermal energy conversion. The role played by the
light diffusion and heat transfer within the medium is
considered and their effect on the obtainable actuation
is studied through numerical simulations based on the
multi-physics theory developed.
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source are credited.
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Nomenclature

microscale (molecular scale) quantities
b Kuhn’s length of a chain segment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ca number of cross-links of the polymer network per unit
volume (proportional to the concentration of active chains)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kB Boltzmann constant
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�0 step length tensor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�0‖, �0⊥ step lengths in the direction parallel and perpendicular to
the mesogens alignment, respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n unit vector defining the nematic order orientation in the
three-dimensional space

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N number of segments in a polymer chain belonging to a
single network

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q, Q nematic order tensor and order parameter of the LCE,
respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r end-to-end distance of a polymer chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

entropy of a single chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ0(r),ϕ(r) normalized distribution function of the polymer’s chains in
the stress-free and in the current state, respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ0(r),ρ(r) distribution function of the end-to-end vector in the stress-
free and in the current state, respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μi , i= 1, 2, 3 eigenvalues of the distribution tensorµ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ0, μ, μn chain distribution tensor corresponding to the chain
distribution function in the stress-free, in a generic state,
and of a nematic network, respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ stretch of the single polymer chain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ deformation energy for a single chain

macroscale (continuum scale) quantities
A light absorbance of the material

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c specific heat of the material
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D dissipated energy per unit volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E Young modulus
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

E internal energy per unit volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F, Fij deformation gradient tensor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h heat flux vector crossing the boundary of the unit volume
domain per unit time

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L = ḞF−1, Lij velocity gradient tensor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

J volume change ratio, J= V/V0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P first Piola stress tensor related to the mechanical
deformation of the network

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

q heat generated per unit volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Continued.)
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macroscale (continuum scale) quantities
s entropy per unit material volume

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

t time
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T absolute temperature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TNI LCE phase transition absolute temperature
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ shear modulus
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ 0,Ψ network’s deformation energy per unit volume in the stress-free and in
the current configuration, respectively

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ψ ext mechanical energy associated with the external forces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ξe Helmholtz free energy per unit current volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

π hydrostatic pressure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π total potential energy per unit volume
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ Cauchy stress tensor
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Introduction
Several types of responsive materials, such as polymers possessing functionalities conferred by
particular embedded molecules or by their particular microstructure, have been synthesized in
the last decades [1]. The availability of active materials paves the way to the development of new
and unprecedented applications, where they can be exploited as untethered sensors or actuators
whose driving energy is provided wirelessly [2,3].

Within the realm of active materials, liquid crystal elastomers (LCEs) are a promising class of
responsive polymers gathering peculiar properties of fluids and solids at the same time. LCEs
possess both liquid crystal orientational order and mechanical properties of a highly deformable
amorphous polymer network, the latter coming from a sufficiently low cross-link density of the
network.

The microstructure of an LCE material is made of elongated rigid molecules (mesogens)
capable of reversibly switching from an isotropic (random chain orientation) to an anisotropic
(preferential chain orientation) configuration, leading to a macroscopic spontaneous deformation
of the material [4]. The resulting material possesses unique responsiveness capabilities to a
variety of physical stimuli (heat, electric and magnetic fields, light, etc.) which can trigger
huge reversible detectable deformations taking place in a short time interval [5–8]. The arising
macroscopic deformation—usually associated with large force or torque outputs—makes them
perfect candidates for designing artificial muscles, deployable structures, soft actuators, optical
devices, adjustable microscopy and imaging systems, etc. [9–11]. Since the above-mentioned
stimuli can be easily encountered in real situations, such as those related to environmental
or bio applications, the use of LCE-based devices is of particular interest since they can be
designed in order to smartly respond to accomplish a desirable task according to the surrounding
environment [12,13].

LCEs are synthesized by cross-linking liquid crystal mesogen units to a highly deformable
network: the high deformability of their entropic energy-dominated network microstructure
and the reversible phase transformation of their nematic mesogens makes LCEs capable of
displaying shape morphing at will when a proper mesogens ordering pattern is inferred to the
material [14–21]. Various building approaches have recently been developed to create structures
or LCE-based devices possessing a controlled mesoscale architecture suitable to produce the
desired actuation [14–16]. The most promising production approaches are those based on three-
dimensional printing technologies, such as the direct ink writing (DIW), enabling the director
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Figure 1. Schematic of the reversible nematic to isotropic phase change in a main chain LCE upon crossing the transition
temperature TNI by heating up or cooling down the material.

alignment and pattern within a two-dimensional or three-dimensional domain to be precisely
controlled [18–21].

Basically, an LCE is made of polymer chains, mesogen units and cross-linker components,
whose synthesis requires us to covalently link the three above-mentioned constituents. Mesogen
molecules are ‘rod-like’ elements, with one axis appreciably longer than the other ones, containing
a reactive group, a spacer unit separating the core of the mesogen from the polymer, and a core
component. Most commonly, the synthesis technique for cross-linking the polymer chains to
the mesogen units is through the hydrosilylation reaction or acrylate polymerization [22]. The
process requires the mesogen units and cross-linker molecules to be properly functionalized,
for instance by using vinyl groups for the hydrosilylation reaction and acrylate groups in the
acrylate polymerization. The resulting elastomer has an amorphous structure, being the polymer
chains randomly arranged in the three-dimensional space, and so the mesogen units do not
have any preferential alignment direction. Once the LCE has been synthesized, the preferential
orientation of the network is obtained by aligning the mesogen units; typically, this is obtained
by mechanical-, magnetic- or three-dimensional printing-based orientation techniques. The
preferential orientation is inferred to the material after it has been partially polymerized, i.e. when
it is not fully solid. Finally, the polymerization process is completed to freeze the microstructure
in the anisotropic state. It is worth recalling that, whereas mechanical- and magnetic-based
orientations allow obtaining a simple uniaxial (monodomain) alignment, three-dimensional
printing enables us to build complex alignment patterns in two or three dimensions.

Two mesogen-network architectures can usually be found in LCEs, namely the so-called side
chain LCEs (SCLCEs) and the main chain LCEs (MCLCEs); in the first case, the mesogen units are
chemically attached to the linear polymer network backbone as side-groups, while in the second
case the mesogen units are cross-linked as one of the constituents of the polymer forming the
LC network. Nematic, smectic or cholesteric LCE can be obtained by using both side chain and
MCLCEs [23]. Interesting mechanical behaviour and morphing capabilities arise because of the
elastic anisotropy; a spontaneous contraction or elongation, induced for instance by a temperature
change, allows the microstructure to switch from the ordered to the disordered state [24,25].

In fact, the coupling of the orientational order of the mesogen units with the polymer
network is stable up to the so-called phase transition temperature while, if such a temperature
is overcome, the network changes conformation, becoming isotropic (figure 1). Correspondingly,
a macroscopic change in the sizes of the entire network emerges because of the contraction
(expansion) along (normal to) the director axis. Size changes are particularly evident in MCLCEs.
It is worth recalling that the deformation rate taking place when the phase transition occurs
in temperature-responsive LCEs is mainly governed by the thermal heat conductivity of the
material, and a fast actuation is usually possible [26].
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The preferentially orientated structure is usually described by the director parameter (n), a
unit vector indicating the average direction of the mesogen units [5,6]. The degree of scattering
of the mesogens embedded in the polymer network, measured with respect to their mean
preferential orientation, is quantified by the order degree whose magnitude is provided by the
order parameter.

Beyond standard ’trial and testing’ approaches, efficient physics-based modelling tools,
suitable to quantitatively describe the behaviour of this class of materials, are of crucial
importance for the design and optimization of new devices.

The precise knowledge and a full control of the molecular scale mechanisms taking place
in LCEs are desirable when the material design is needed for high precision applications,
such as small-scale sensors or actuators. Within this class of approaches, molecular-based
simulations (lattice models) represent suitable tools [27]; moreover, molecular dynamics (MD)
approaches—based on the intermolecular forces existing between the mesogens and the network
molecules described by suitable interaction potentials—have been used for modelling LCEs from
a molecular standpoint. These approaches allow understanding the molecular origin of the phase
transition, the influence of the mechanical deformation and of the applied physical stimuli. It is
worth mentioning that the use of molecular scale simulation tools has some limitations related to
the huge computational resources needed even for studying very small LCE domains [28].

A continuum model—suitable to be implemented in a computational framework—is
generally necessary to fully exploit the potentialities offered by modern fabrication technologies,
enabling us to arrange the mesogen orientation in generic patterns. The use of continuum-level
approaches and their computational coding in a robust finite-element (FE) framework, have been
demonstrated to be a promising tool for simulating the order evolution induced by environmental
stimuli [29,30]. It is also worth recalling that several structural models have been formulated to
describe the deformation [31] and the mechanical response of simple LCE structural elements,
such as plates and shells, in which a given order parameter field has been assumed to exist
[15,32,33].

The goal of this study is to provide a comprehensive multi-physics framework suitable to
describe the responsiveness of LCEs when exposed to external stimuli, such as light-induced
heating. The network-scale mechanisms underlying the phase transition are first considered (§2),
as well as some fundamental thermo-dynamical aspects relevant to the problem under study (§3).
Since we are interested in providing a comprehensive framework encompassing the main physics
involved in LCEs subjected to an external stimulus, we consider the light diffusion phenomenon
and the related heat generation and transport to determine the evolving temperature field within
the material (§4). The multi-physics theoretical model is finally coded into an FE framework
whose details are briefly provided in §5. Section 6 is devoted to illustrating some relevant
examples aimed at demonstrating the influence of the main parameters involved in light-driven
LCEs. Finally, §7 depicts some final remarks and future perspectives in the field.

The proposed multi-physics approach is of general applicability and has no restrictions
related to specific structural elements. It is suitable to describe elastomers characterized by
multiple networks, allows accounting for strain-rate effects and damage mechanisms, and
can be straightforwardly coded in a computational framework, enabling the simulation and
design of real cases requiring—differently from molecular-based approaches [28]—a reduced
computational effort. Moreover, the model’s parameters have a clear physical meaning, enabling
the design of the material starting from its molecular structure.

2. Mechanics of liquid crystalline elastomer network

(a) Basic concepts
Elastomers are characterized by a microstructure made of entangled chains, eventually
reciprocally joined at discrete points to form a three-dimensional network; this disordered
structure suggests adopting a statistical description of the network configuration. Because of
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the above-mentioned amorphous structure, the network state is dominated by entropic energy,
while the enthalpic contribution becomes relevant only at very high deformation levels, when the
stretched chains lose their randomness and start being roughly aligned along the stretch direction.
In order to fully exploit the statistical-based description of the chain network, in the following we
consider only the entropic contribution to the mechanical energy.

Within the so-called rubber elasticity theory, a single chain is assumed to be made of N
identical rigid monomer units (Khun’s segments) of length b, while their arrangement in the
three-dimensional space is assumed to be described by the random-walk theory (freely jointed
chain model, FJC). The chains’ physical state is assumed to be provided by the so-called
chain’s end-to-end vector r [34]. Upon stretching, chains start uncoiling, thus the disorder level,
and consequently the entropic energy, reduces. Because of the assumed rigidity of the Khun’s
segments, the extension of a chain is limited and the distance |r| between its endpoints cannot
overcome the chain’s contour length Nb; by following the affine deformation hypothesis, and
being |r̄| = b

√
N the mean end-to-end distance of a network’s chain in the stress-free state, the

chain’s stretch limit is equal to λmax = |rmax|/|r0| = bN/b
√

N = √
N.

When the statistical mechanics approach is considered, one of the main issues relies on
understanding how the statistics conformation of an individual chain is related to the mechanics
of the entire polymer network and, in turn, on how to upscale it to the macroscopic level
(continuum mechanics). To this end, various models have been proposed in the literature [35],
such as the three-chain model [36], the four-chain model [37], the eight-chain model [38] and
the full network model [39–41]. In this work, we adopt a mechanical description of the polymer
network based on a full network model.

We now introduce the chain distribution function of the polymer network, quantifying the
amount of chains per unit polymer volume characterized by a given end-to-end vector r; in the
stress-free reference state (at the time t = 0) it is expressed as

ρ0(r) = caϕ0(r). (2.1)

The chain distribution function ρ0 has been expressed as the number of mechanically active
cross-links ca (proportional to the number of chains that from the mechanical viewpoint are
effectively joined to the network), times the normalized distribution function ϕ0, usually assumed
to be described by the standard Gaussian distribution, ϕ0(|r|) = (3/2πNb2)3/2exp(−(3|r|2/2Nb2)),
with mean value r = 0 and standard deviation b

√
N/3 [34]. It is worth noticing that the

integral
∫
Ω ϕ0dΩ = 〈ϕ0〉 = ∫ 2π

0
∫ π

0

(∫ Nb
0 ϕ0(r)r2dr

)
sin θdθdω= 1 since it represents the cumulated

probability of finding all the chain lengths and orientations in the unit volume; the integral of the
distribution function over Ω thus leads to 〈ρ0(r)〉 = ca.

It is worth recalling that the number of cross-links per unit volume is related to the shear
modulus μ of the material through the well-known expression μ= ca kB T, where kB and T are the
Boltzmann constant and the absolute temperature, respectively [34]. If the cross-link density is
preserved during a generic deformation process, i.e. if we exclude the possibility to have breaking
of chains, at any generic time instant t> 0 it happens to be 〈ρ(r, t)〉 = ca.

The energy stored in a single chain is usually made to depend on its stretch, considering that
the rest state of the chain corresponds to |r| = 0. According to the Gaussian statistics, valid for
moderate stretch values, the elastic energy of a single chain is expressed asψ(r) = (3kBT/2Nb2)|r|2,
while the deformation energy density of the polymer is

�Ψ =Ψ − Ψ0 = ca 〈[ϕ(r, t) − ϕ0(r)]ψ〉 + π [det(F) − 1], (2.2)

where Ψ 0 = [3cakBT/(2Nb2)] tr[(Nb2/3)1] is the non-zero energy density in the initial stress-free
state of the material and π is the hydrostatic stress required to satisfy the isochoric deformation
assumption, J = det(F) = 1. In (2.2), F is the deformation gradient, F = ∂x/∂X, being X, x the
position vector in the reference and in the current deformed configuration, respectively, and ϕ(r, t)
is the actual dimensionless chain distribution function.
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In equation (2.2), is the energy per single chain, with being its entropy.

According to the Gaussian statistics, such an entropy is expressed as , while

it is given by kB

(
β λ√

N
+ ln β

sinh β

)
, when the Langevin statistic (suitable for large

deformations) is adopted, being β =L−1
(
λ/

√
N

)
, where L is the Langevin function defined as

L(�) = coth(�) − �−1 [34].
It is worth recalling that, in general, the force in a chain is provided by the derivative of the

chain energy with respect to its end-to-end vector, i.e. |f| = |∂ψ(r)/∂r|. Let us now introduce
the chain distribution tensor defined as

μ =
∫
Ω

ϕ(r, t)r ⊗ rdΩ = 〈ϕ(r, t)r ⊗ r〉, (2.3)

thus, the previous expression of the energy density evaluated by using the Gaussian statistics,
equation (2.2), can be restated as [41]

�Ψ = 3cakBT
2Nb2

∫
Ω

[ϕ(r, t) − ϕ0(r)]|r|2dΩ + π [det(F) − 1]

= 3cakBT
2Nb2 tr(μ − μ0) + π (J − 1). (2.4)

It can be easily demonstrated that for polymers whose network chain end-to-end distance
obeys the Gaussian distribution in the stress-free state, the distribution tensor assumes the simple
form μ0 = μ(F = 1, t = 0) = (Nb2/3)1 [41]. The chain distribution tensor µ is characterized by three
eigenvalues, μ1, μ2, μ3 such that, in the principal direction frame of reference, it can be expressed
in the diagonal form µp = diag(μ1, μ2, μ3).

(b) Application of chain configuration statistics to liquid crystalline elastomers
Dealing with nematic elastomers, it must be considered that the microstructure of the material
is characterized by the field of the director direction, whose spatial rearrangement allows the
material to show spontaneous deformations. The main physics-based theory based on a statistical
description of the LCE’s chain network relies on the fundamental developments of Warner &
Terentjev [6]. They extended the classical rubber elasticity to LCEs by introducing the effect of the
preferential orientation existing in the polymer network.

The present approach is based on the description of the LCE network through the chain
distribution tensor, which enables a general physics-based modelling of the mechanisms
taking place at the molecular level, in the present case being represented by the nematic–
isotropic transition of the mesogen units. The approach is easily adaptable to describe the
mechanics of elastomers characterized by multiple networks, as well as for describing other
mechanisms taking place at the molecular level, such as strain-rate effects, chains uncoiling,
damage, etc.

The distribution tensor, presented in the previous section for standard polymers, is hereafter
extended to consider the preferential chain orientation induced by the nematic order of the
embedded mesogen units. It is worth mentioning that the network description based on the
chain distribution tensor can be extended to describe other mechanisms affecting the material
responsiveness, such as the cross-link density coming from the LCE synthesis [40].

Typically, in the stress-free state standard polymers chains are uniformly oriented in all
the directions of the three-dimensional space, i.e. the distribution function can be thought
to have a spherical symmetry, and the corresponding distribution tensor µ0 is characterized
by three identical eigenvalues, μ0 =μ01 =μ02 =μ03, i.e. µ0 = diag(μ0, μ0, μ0). Any mechanical
deformations and/or nematic order change are responsible for the evolution of the distribution
tensor, as will be illustrated in the following. Let’s now start by considering the stress-free state of
the network (at the time of cross-linking) to be characterized by a non-isotropic chain distribution;
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in this case, the Gaussian distribution function takes the form [6]:

ϕ0(r) = 1√
det �0

√(
3

2πNb

)3
exp

[
−3r · �−1

0 r
2Nb

]
, (2.5)

where the step length tensor of the chain distribution �0 = �0⊥1 + (�0‖ − �0⊥)n ⊗ n has been used.
This tensor quantifies the anisotropy of the chain arrangement through the effective initial step
lengths, �0⊥ and �0‖, measured parallel and perpendicular to the director n of the mesogens,
respectively, [7]. In a highly aligned chain network, it happens to be �0‖ � �0⊥, while when the
network is in the isotropic state the averaged square end-to-end chain distance is given by

〈
r2

i

〉 =
Nb2/3, i = 1, 2, 3, �0‖ ∼= �0⊥ and the step length tensor reduces to �0 = b1.

By using the definition of the chain distribution tensor provided by equation (2.3), and
adopting the non-isotropic chain distribution function (equation (2.5)), the following chain
distribution tensor-step length tensor relationship can be established:

μ0n = Nb
3

�0. (2.6)

It happens to be tr (µ0n)= Nb2, irrespective of the nematic order parameter. It is worth noticing
that the eigenvaluesμ0ni, i = 1, 2, 3 of the tensor µ0n represent the standard deviation of the chain’s
end-to-end distance in the stress-free state, evaluated along the three principal directions of µ0n,
i.e. μ0ni = 〈

r2
0i

〉
.

Let’s assume that, at a generic time instant t, the principal directions of the distribution tensor
µn(t) are aligned with those of the Cartesian coordinate frame of reference; in such a case, the
distribution tensor can be related to the order parameter Q(t) as

μn(t) = Nb
3

�(t) = Nb
3

b[(1 − Q(t))1 + 3Q(t)n ⊗ n]

or in matrix form : μn(t) = Nb
3 b

⎡
⎢⎣ 1 − Q(t) 0 0

0 1 − Q(t) 0
0 0 1 + 2Q(t)

⎤
⎥⎦ (2.7)

where the well-known relationship between the step length tensor and the order tensor,
�(t) = b[(1 − Q(t)) 1 + 3Q(t) n ⊗ n] or equivalently �(t) = b[2Q(t) + 1] being Q = Q/2(3n ⊗ n − 1)
the order tensor (or the de Gennes tensor [5]), has been exploited [6]. In equation (2.7), Q(t) =〈
(3/2)cos2θ (t) − (1/2)

〉
is the so-called order parameter, θ being the angle of mesogens orientation

dispersion with respect to the director n here assumed to be parallel to the z -axis of the Cartesian
coordinate frame of reference, n ≡ z = (0, 0, 1). The mean deviation from such a preferential
direction is mathematically assessed through the order parameter. The value Q = 1 indicates that
all the mesogens are perfectly aligned with the z-axis, while if Q = 0 they are randomly oriented in
the three-dimensional space; finally, if Q = −(1/2) the mesogen units lay on the x–y plane. When
intermediate values of the order parameter are considered, 0<Q< 1, an intermediate degree of
alignment about the z-axis exists, while the dispersion degree increases as Q → 0.

It is well-known that in LCEs θ (t) = θ (T(t)), i.e. the scattering angle depends on the temperature
of the material. When T<TNI the material is in the nematic state, while when T>TNI the material
undergoes a phase transformation and the mesogens switch to the isotropic state [6].

According to the classical theory of LCEs, an intimate relationship between the step length
tensor and the order tensor, �–Q, exists. Since equation (2.7) relates the chain distribution tensor
to the step length tensor (µ– � relationship), a relationship between the chain distribution tensor
and the order tensor can be also established (µ–Q relationship) as follows:

Q(t) = 1
2

(
�(t)

b
− 1

)
= 1

2

(
3
μ(t)
Nb2 − 1

)
. (2.8)

In order for the present model to be suitable to describe the mechanics of LCEs, the mesogen
units need to be properly and effectively bonded to the polymer network, i.e. their preferential
orientation setting must be fully transmitted to the polymer chains.
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(c) Energy density of liquid crystalline elastomers
In order to determine the physical state of the network, its energy density is required to be
evaluated along the applied deformation and/or stimuli paths; for this purpose, it is convenient
to define the time rate of the energy density variation of an LCE provided by equation (2.4). The
time rate of the energy density is given by [41]

�Ψ̇ = 3cakBT
2Nb2

⎡
⎢⎣ Ṫ

T
tr(μ − μ0) + tr (μ̇F + μ̇n︸ ︷︷ ︸

μ̇

−μ̇0)

⎤
⎥⎦ + Jπ tr(L), (2.9)

where both the temperature and the deformation have been assumed to depend on time; for
simple isothermal processes, it happens to be Ṫ = 0, while if the temperature varies slowly in time
it is reasonable to assume that Ṫ ∼= 0 so the first term in parenthesis vanishes. In equation (2.9), the
time rate of the distribution tensor μ̇ has been written as the sum of two different contributions:
(i) the time rate provided by the contribution of the mechanical deformation, μ̇F and (ii) those
coming from the time rate of the LCE nematic–isotropic phase transition, μ̇n. In equation (2.9)
L is the velocity gradient tensor, L = ḞF−1, whose trace happens to be zero for incompressible
deformations, as we are assuming here. Splitting the energy density, or correspondingly its time
rate, into a contribution coming from the mechanical deformation and one from the nematic–
isotropic transition, i.e. �Ψ =�Ψ F +�Ψ n, is usually adopted in molecular-statistical theory of
nematic elastomers [42].

The above expression of the time rate of the energy density�Ψ has been obtained by applying
the integration by part of the term

〈
[ϕ̇(r, t) − ϕ̇0(r)]|r|2〉 in equation (2.4), and by expressing the

time derivative of the chains’ end-to-end distance probability distribution functions ϕ as [43]

∂ϕ(r, t)
∂t

= −∇ϕ(r, t) · Lr − 2tr(L)ϕ(r, t), (2.10)

that simplifies to ∂ϕ(r, t)/∂t = −(∇ϕ ⊗ r) : L when an isochoric deformation is considered, being
tr(L) = 0 in such a case. Since the chain distribution space is embedded within a single point of
the material and we adopt the affine deformation hypothesis, the deformation gradient F and the
velocity gradient L are homogeneous throughout the chain configuration space and the rate of the
chain’s deformation ṙ can be expressed as ṙ = Lr.

By recalling equation (2.8), in order to ensure the objectivity of the time rate of the distribution
tensor associated with the nematic tensor field µn, it must be expressed as [43]

μ̇n = ∂μn

∂t
= Nb2

3
∂(2Q + 1)

∂t
= 2

Nb2

3
(Q̇ − WQ + QW), (2.11)

W = 1/2(∇u̇ − ∇u̇T) being the spin tensor (with u the displacement field) [44], while the time
derivative of the order tensor Q̇ = Q̇/2(3n ⊗ n − 1) can be evaluated as follows:

Q̇(t) =

⎡
⎢⎣−Q̇(t)/2 0 0

0 −Q̇(t)/2 0
0 0 Q̇(t)

⎤
⎥⎦ , (2.12)

Q̇ being the time derivative of the order parameter. The time derivative of the order tensor does
not depend on the time derivative of the nematic director, since it does not change during the
phase transformation. In fact, during the nematic–isotropic transition the alignment degree of the
mesogen units reduces (the angle of scattering increases), without any change of their preferential
direction n typically embedded in the material during the synthesis process. Since the nematic–
isotropic transition is reversible, once the isotropic state has been achieved, the reverse transition
occurs upon material cooling, and the mesogens re-orient recovering their initial preferential
orientation.
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Since the order parameter Q(T) changes with the temperature, we adopt the following
empirical relationship for its dependence on the temperature:

Q(T) = Q0

1 + exp( T−TNI
p )

, (2.13)

p being a material-specific constant parameter, relevant only in the transient regime, controlling
the steepness of the smooth nematic–isotropic phase transition with respect to the temperature
variation upon crossing the temperature TNI: when the temperature rises beyond TNI, the order
parameter value changes from the initial one (Q0) tending toward zero (isotropic state). The
reverse transformation takes place when the material is cooled down. The time rate of the order
parameter is given by Q̇ = (dQ/dT)Ṫ, with dQ/dT = −(Q2/pQ0) exp( T−TNI

p ).

3. Thermodynamic considerations
A link between the microscale and the macroscale response of the polymer can be obtained by
expressing macroscopic measures, such as the stress tensor and the energy variation, in terms of
network-related quantities, such as the above-defined distribution tensor.

For a generic process, the time rate of the internal energy density E is expressed as Ė = σ : L −
∇ · h + q̇, where σ is the Cauchy stress, h is the heat flux crossing the boundary of the unit volume
domain per unit time and q̇ is the rate of the heat supplied to the unit volume of material. By
introducing the Helmholtz free energy per unit current volume, Ξe, its time rate can be expressed
as

Ξ̇e = (σ : L − ∇ · h + q̇) − Ṫs − Tṡ − Ḋ, (3.1)

where Ḋ is the rate of the dissipated energy density, here introduced to account for non-
conservative effects, and s is the entropy per unit volume. The Clausius–Duhem inequality,
enforcing the second principle of thermodynamics, establishes a fundamental relationship
between the rate of entropy per unit volume (ṡ) and the above-defined energy terms,

ṡ −
(

q̇
T

− 1
T

∇ · h + 1
T2 h · ∇T

)
≥ 0. (3.2)

By substituting the expression of ṡ obtained from equation (3.1) in equation (3.2), we obtain:

(σ : L − Ṫs − Ξ̇e) − 1
T

h · ∇T ≥ 0. (3.3)

On the other hand, the Helmholtz free energy and its time rate, Ξ̇e, have to be evaluated by taking
into account the material heat absorption,

Ξe =�Ψ + (c − s0)(T − T0) − cT ln
T
T0

and Ξ̇e =�Ψ̇ − Ṫs0 − cṪ ln
T
T0

(3.4)

where c is the specific heat of the material assumed to be constant. By recalling equation (2.4), the
time rate �Ψ̇ of the energy density assumes the following expression [41]:

�Ψ̇ = 3cakBT
2Nb2

[
(μF − μ0) : L + tr μ̇n + Ṫ

T
tr(μ − μ0)

]
+ π tr(L), (3.5)

μF(t) = μ0 + ∫ t
0 μ̇Fdt being the distribution tensor corresponding to the network in the actual state

whose deformation comes from mechanical actions only. Similarly, we can define the distribution
tensor related to the nematic–isotropic phase change as: μn(t) = μ0 + ∫ t

0 μ̇ndt. By using equations
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(3.3), (3.4) and (3.5), the following inequality can be established:

σ : L − Ṫs −
[
�Ψ̇ − Ṫs0 − cṪ ln

T
T0

]
− 1

T
h · ∇T + Ḋ ≥ 0, (3.6)

where Ḋ is now the time rate of the dissipated mechanical energy density due to the phase
transition occurring in the LCE network.

Using equation (3.5) in equation (3.6) and rearranging the terms, we finally obtain the
inequality: [

σ − 3cakBT
2Nb2 (μ − μ0) − π1

]
: L + 3cakBT

2Nb2 tr μ̇n+

− Ṫ
[

s − s0 + 3cakB

2Nb2 tr(μ − μ0) − c ln
T
T0

]
− 1

T
h · ∇T ≥ 0, (3.7)

where Ḋ = ( 3cakBT
2Nb2 )tr μ̇n is the expression assumed by the mechanical energy density dissipation

rate due to the phase transition taking place in the LCE, while the stress tensor can be recognized
to be given by

σ (t) = J−1PFT = ∂�Ψ

∂F
FT = 3cakBT

Nb2 [μ(t) − μ0] + π (t)1 (3.8)

with P being the first Piola stress tensor, μ(t) = μ0 + ∫ t
0 (μ̇F + μ̇n)dt, and J = 1.

It is worth recalling that statistical-based network models, like the one we are adopting, are
suitable to assess the mechanics of highly deformable polymers whose chains conformation
change is significant during the mechanical deformation process and so is the entropic energy
variation. Too highly cross-linked and/or entangled (i.e. stiff) networks are not properly
described by this class of model. Further, it has to be considered that in very highly stretched
networks, the enthalpic energy also plays a role, so entropic energy does not suffice to fully
describe the mechanical state of the material [36,45].

4. Stimuli-induced phase transition in liquid crystalline elastomers
Nematic to isotropic phase transition is reversible and maintains high efficiency even after many
cycles; according to the underneath LCE chemistry, it can be induced by various stimuli—such
as mechanical stress, heat, magnetic field, light, etc.—among which temperature variation can be
considered the most important [46].

At room temperature, LCEs are in the nematic phase because of the high orientational order of
mesogen units, while at temperatures greater than the transition temperature the mesogen units
lose their orientational order leading to an isotropic state [47,48]. Because of its efficiency, speed
of actuation and untethered nature, phase transformation induced by photo-thermal heating
represents an interesting way of actuating LCEs, enabling the development of unprecedented
applications [49,50].

(a) Photo-induced phase transition in liquid crystalline elastomers
Heating can be induced by harnessing the photo-thermal effect provided by particles—such
as gold, iron and magnetite nanoparticles—embedded into the material, i.e. by exploiting
the photon-heat energy conversion phenomenon. The potentialities offered by the use of
nanoparticles as light-thermal converters have been studied in recent years because of their
capability to speed up the heating process of a material, useful to improve the actuation velocity
when a responsive material is concerned.

Light radiation is converted into heat when it encounters nanoparticles: a fraction of the
generated heat energy spreads in the material by conduction, convection and radiation, while
a fraction is dispersed (figure 2). For the sake of simplicity, in the following we consider that the
heat generated by light remains entirely in the medium in which it propagates by conduction. The
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Figure 2. Heat generation due to light-thermal energy conversion in an LCE material with embedded photo-thermal
nanoparticles. The incident light source,moving at a velocity v andwith the light direction forming the angleγ with the normal
n to the hit surface, is assumed to have a Gaussian-like intensity distribution on the top surface of the domain.

heat q generated by lighted nanoparticles embedded into a material is proportional to the light
intensity I times the absorbance A of the material, i.e. [51–53]:

q(X, t) = A(X, t) I(X, t) for X ∈Ω0. (4.1)

Light diffusion in a semitransparent medium is an instantaneous phenomenon whose light
intensity field depends on the value of the absorbance distribution in the material. We assume that
the incoming light beam is characterized by its own intensity distribution, and by its inclination
with respect to the normal to the hit surface (figure 2).

The light diffusion in a three-dimensional domain Ω0 is governed by the Beer–Lambert
law, equipped with the proper boundary conditions; by referring to the undeformed reference
configuration, the governing PDEs are expressed as [54]

l(X, t) · ∇XI(X, t) = −A(X, t) I(X, t), X ∈Ω0
I(X, t) = I0(X, t), X ∈ ∂Ω0,

(4.2)

I(X, t) being the light intensity at the position X and time t, while l(X, t) is the unit vector
indicating the direction of the incoming light beam. In equation (4.2), ∇X indicates the gradient
operator in the reference configuration and A(X, t) is the light attenuation coefficient (or
absorbance), providing the light intensity reduction while the light crosses the material, figure 2.

The simplest assumption for evaluating the absorbance is to adopt a constant value for such a
parameter throughout the deformation process, i.e. the change of the nematic order is assumed to
not influence the degree of light depletion when light crosses the material. On the other hand, the
light absorbance can be reasonably made to depend on the angle formed by the light direction l
with respect to the direction of the nematic director [55]. The parameter A can be simply estimated
by accounting for the absorbance coming from the polymer backbone, Apol, as well as for the
absorbance induced by the photo-thermal particles (photo-absorbers) whose molar absorptivity
is ϑ [56]

A(X, t) = Apol + ϑCn(X, t). (4.3)

In equation (4.3) Cn is the concentration of photo-absorbers which can eventually vary in time if
they are consumed in some chemical reactions, such as the photopolymerization, taking place in
the material. If no chemical reactions take place and assuming incompressibility, the concentration
Cn can be reasonably taken to be homogeneous and time-independent within the LCE domain.
It is worth mentioning that the light absorbance of a material can be easily determined by
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considering one-dimensional light propagation through a material element of known thickness a
as: A = (lnIIN − lnIOUT)/a, IIN and IOUT being the light intensities of the incident and of the light
exiting from the material.

Once the heat density generated per unit volume has been determined through equation
(4.1), the temperature evolution in the material can be determined by solving the standard heat
conduction Fourier equation, equipped with the related boundary conditions.

5. Computational aspects
The above illustrated multi-physics theoretical approach developed to model LCEs is here
restated in view of its computational coding. To this end, the problem is formulated by adopting
a variational approach for the mechanics, phase transition, as well as for the light diffusion
problem. Let us consider an undeformed region B0, bounded by ∂B0, occupied by the LCE; the
first variation of the total potential energy Π with respect to the displacement field u reads:

δuΠ = δu

(∫
B0

�Ψ dV + Ψext

)
= (5.1a)

=
∫
B0

∂Ψ

∂∇F
∂F
∂∇u

· δ∇u dV−
∫
B0

b · δu dV−
∫
∂B0

t · δu dA = δuΨint + δuΨext = (5.1b)

=
∫
B0

−
[
∇ · PF + 3cakBT

Nb2 ∇ ·
(
μnF−T

)
+b

]
· δu dV +

∫
∂B0�

(P n − t) · δu dA = 0 (5.1c)

where Ψ ext is the energy associated with the external body force b and surface tractions t, and n is
the unit outward normal to the boundary ∂B0. In equation (5.1c), obtained from (5.1b) by applying
the divergence theorem, the first Piola stress tensor has been written as

P = ∂�Ψ

∂F
= PF + Pn = 3cakBT

Nb2 [μF − μ0]F−T + πF−T︸ ︷︷ ︸
PF

+ 3cakBT
Nb2 μnF−T︸ ︷︷ ︸

Pn

. (5.2)

where the two contributions, one coming from the mechanical deformation, PF , and the other
from the phase change, Pn, have been outlined. By introducing the standard FE discretization of
the domain of interest, the interpolations of the nodal-related quantities reads:

u ∼=
nn∑

i=1

[N]iũi, ∇Xu ∼= ∇X

nn∑
i=1

[N]iũi =
nn∑

i=1

[B]iũi, (5.3)

where the interpolated displacements and their gradient have been expressed by using the
corresponding nodal values ũi. In equation (5.3), B = ∇XN is the standard compatibility matrix
and N the shape function matrix (whose terms associated with the i-th node have been indicated
with [B]i and [N]i, respectively) and nn is the number of nodes. By using the above interpolations
and referring to the domain B0e (with boundary B0e) of a single FE, starting from equation (5.1b)
we obtain the following equilibrium equation expressed in terms of the residual force vector Re:

Re = Re
int − Re

ext =
[∫

B0e

BTPF dV
]

−
[∫

B0e

NTb dV +
∫
∂B0e�

NTt dA

−3cakBT

Nb2

∫
B0e

BT
(
μnF−T

)
dV

]
= 0 (5.4)

where Re
ext depends on the external mechanical forces and on the temperature of the material

through the distribution tensor μn. By linearizing equation (5.4), the above-defined residual force
vector is made to vanish at equilibrium by iteratively solving the following nodal displacement
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incremental equations

Kj
T�ũj = −Rj

i,

with Kj
T = A

ne
e=1Kej

T , and ũj
i = ũi−1 +

j∑
k=1

�ũk,
(5.5)

that have been written at a generic mechanical load step i and iteration j, by considering the
domain of the problem discretized with ne finite-elements. In (5.5), ũi−1 is the converged solution

at the previous step, Kej
T = ∂Rej

i
∂u is the standard tangent stiffness matrix of the finite-element e

for the current step and iteration, and A is the assembly operator. It is worth mentioning that
the micromechanical model presented in the previous sections is assumed to be adopted at
the Gauss point level in the computational FE framework. The light diffusion and the heat
conduction problems (namely the Beer–Lambert law [57] and the Fourier’s heat conduction
equation, respectively) are solved numerically, by adopting the same FE framework used for
the mechanical problem, and whose equations are obtained through a weak formulation of the
governing PDEs.

The solution of the light diffusion, heat conduction and mechanical problems, provided
that the time step is sufficiently small, can be conveniently solved by adopting a staggered
scheme to overcome the solution of a fully coupled problem. This approach is computationally
convenient with respect to a fully coupled formulation; although the problem’s unknowns are
linked together, they can be evaluated directly by solving alternatively the corresponding sub-
problems. In more detail, the staggered solution procedure can be summarized as follows: (i)
light diffusion problem (main unknowns: nodal light intensities). When the light intensity on the
boundary is assigned in time, the light intensity within the domain is evaluated through the
solution of the Beer–Lambert law (no iterations required) [57]. (ii) heat conduction problem (main
unknowns: nodal temperatures). Once the heat generated per unit volume has been determined
from the light intensity determined in (i), the temperature in the material is evaluated by solving
the Fourier’s heat conduction equation (no iterations required). (iii) mechanical problem (main
unknowns: nodal displacements). Once the temperature in the material is known at a given time
instant, the microscale quantities of the LCE (order tensor, step length tensor, etc.), and the chain
distribution tensor, are updated. The solution is iteratively updated (equations (5.3)–(5.5)) until
a proper convergence criterion is fulfilled. All the above-mentioned sub-problems are solved by
accounting for the large displacements taking place in the material through the use of an updated
Lagrangian approach.

6. Simulations of liquid crystalline elastomer elements actuated by light-
induced heating

In the following sections, we present some examples illustrating the morphing deformation of
a LCE cantilever beam exposed to a light source. For all the presented cases, the following
common geometrical, mechanical and chemical parameters have been assumed: beam sizes
L = 8 mm, h = t = 0.5 mm, Young’s modulus E = 1 kPa, Poisson’s ratio v = 0.5, mass density of the
LCE ρLCE = 1000 kg m−3, specific heat of the material c = 1050 J kg−1 K, initial value of the order
parameter Q0 = 0.3, phase transition temperature of the LCE TNI = 323 K, while the parameter
controlling the steepness of the nematic–isotropic phase transition has been assumed to be
p = 6. Further, the light absorbance of the polymer has been determined by equation (4.3) with
Apol = 400 m−1, and molar absorptivity of the photo-absorber units is equal to ϑ = 30 m2 mol−1,
while their concentration in the network has been assumed to be Cn = 200 mol m−3. The actuation
capacity of LCEs is here assumed not to be dependent on the cross-link density of the polymer
matrix, despite playing a general role [40]. The light source intensity distribution is assumed

to be described by a Gaussian law as I(X, t) = α(t)I0 exp(−|X(t)−X0|2
d2 ), where I0 is the maximum

intensity occurring at X = X0, and the parameter d defines the width of the distribution; in the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 J

an
ua

ry
 2

02
3 



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220417

..........................................................

case of a moving light source, the position of the maximum light intensity is expressed through
the translation speed v of the source as |X0| = v t. No cooling is assumed to take place for all
the cases examined, i.e. the beam is assumed to lose heat at a rate much slower than that of the
heating.

The FE discretization of the LCE element has been performed by adopting (8 × 64) four-
noded plane stress elements in which the nodal values of the field variables—namely
the light intensity, temperature and displacement vector—have been determined working
within an updated Lagrangian scheme, through the above-mentioned staggered scheme.
The incompressibility constraint has been fulfilled by determining the hydrostatic stress
enabling us to fulfil the volumetric constraint det F = 1 at each Gauss point of the discretized
domain.

(a) Response of a light-driven monodomain liquid crystalline elastomer element under a
uniform light source

In the first parametric simulations, we consider an LCE cantilever beam, whose nematic
orientation is aligned with the x-axis, exposed to a fixed light source with a nearly uniform
intensity characterized by I(X, t) ∼= I0 = 200 mW cm−2 and d2 = 10−3 m2. The response of the
LCE element is studied by adopting three different values of the thermal conductivity, namely
λT = 0.2;0.8;1.5 W mK−1.

In figure 3, the response of the beam is illustrated in three cases: firstly, the light is turned
and kept on during the entire process (figure 3a, α(t) = 1, 0 s ≤ t ≤ 20 s), in the second case the
light intensity is made to vary linearly in the time interval 0 s ≤ t ≤ 10 s (α1(t) = t/10) and then
maintained constantly on in the interval 10 s ≤ t ≤ 20 s (α1(t) = 1), while in the third case the light
intensity is made to vary linearly in the whole time interval 0 s ≤ t ≤ 20 s (α2(t) = t/20, 0 s ≤ t ≤ 20 s)
(figure 3e). The light intensity arising within the element when the light is on (α(t) = 1) is
illustrated in figure 3d. In figure 3b,c, the displacement path of the point P (figure 3b) and its
vertical displacement history (figure 3c) are illustrated for three different thermal conductivity
values λT; it can be appreciated that low values of the heat conductivity allow a temperature
difference between the top and bottom part of the beam to be maintained, so inducing a different
order parameter change responsible for the beam morphing. On the contrary, high values of the
heat conductivity lead to a more uniform temperature throughout the beam, causing a simple
shortening of the beam itself (see red curves in figure 3b,c). The second and third time-dependent
light intensity histories induce a slower temperature increase in time with respect to the first case;
the maximum deformation shown by the LCE element does not depend on the way the light is
spread to the material, while the morphing of the element is delayed according to the way the
light intensity varies in time.

The temperature and the dimensionless order parameter maps, corresponding to the situations
indicated with 1, 2 and 3 in figure 3c (corresponding to the maximum vertical displacement at
point P), are illustrated in figure 4. It appears that a uniform temperature distribution across the
element’s height does not promote a significant nematic–isotropic distribution difference (see the
maps of the order parameter on the right-hand side of figure 4) which is mainly responsible for
the bending actuation.

It can be clearly appreciated that a uniform temperature distribution with values above the
TNI simply entails the shortening of the element because of the homogeneous contraction taking
place along the initial nematic director direction.

(b) Simulation of a light-driven monodomain liquid crystalline elastomer element under
a moving light source

In this second group of tests, we consider the LCE cantilever beam exposed to a moving
light source (translating from left to right), whose intensity distribution is characterized by
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Figure 3. LCE cantilever beam with different thermal conductivity values λT exposed to a uniform light coming from the
top. Light on from t= 0 s until t= 20 s (a); dimensionless displacements at point P in the x–y plane (b) and corresponding
time history of its vertical displacement (c). Schematic of the LCE cantilever beam and light intensity field within the domain,
α= 1 (d). Linear increase of the light intensity in the time interval t = 0 ÷ 10 s and in the time interval t = 0 ÷ 20 s (e);
dimensionless displacements at point P in the x–y plane (f ) and corresponding time history of its vertical displacement (g).
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Figure 4. Map of the temperature (left column) and of the dimensionless order parameter Q/Q0 for the LCE cantilever beam of
figure 3 for three different values of the thermal conductivityλT = 0.2, 0.8, 1.5 W mK−1 adopted for thematerial; the deformed
shapes illustrated correspond to the points 1 (a,d), 2 (b,e) and 3 (c,f ) of the curves in figure 3c (from top to bottom, respectively).

I0 = 800 mW cm−2, d2 = 10−6 m2 (for this choice of the parameter d the Gaussian distribution is far
from being constant over the element’s top surface) and velocity v = 0.5; 2 mm s−1. The thermal
conductivity of the material is assumed to be λT = 0.2 W mK−1 for all cases.

The purpose of the analyses is to study the effect of the speed of the moving light on the
actuation response of the beam in the dimensionless time interval 0 ≤ t/tc ≤ 1, tc being the
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Figure 5. Cantilever beam under amoving light source (a). Dimensionless vertical coordinate of the point P versus time for two
different light velocities, v= 0.5 mm s−1 and v= 2.0 mm s−1 (b). Deformed shape of the centreline of the cantileverwhen the
maximum intensity of the light is placed at X/L= 0.5 with the dimensionless order parameter map at the same time instant
represented on the undeformed configuration (c). Deformed shape of the centreline of the LCE cantilever when the maximum
intensity of the light is at X/L= 1.0 with the dimensionless order parameter map at the same time instant represented on the
undeformed configuration (d).

time of the analysis, i.e. tc = L/v. From figure 5b–d it can be appreciated that a light source
moving sufficiently fast (v = 2 mm s−1) does not allow the material to heat up enough and
the resulting actuation is very low; in fact, the point P moves upward by a small amount
(figure 5b) and also the beam centreline displays a very limited deformation (see dotted red
curve in figure 5b). On the contrary, when the light speed is small (v = 0.5 mm s−1) the heating
process is most effective, and the actuation of the LCE element is clearly visible (black dot
curves in figure 5b–d). In particular, when the maximum light intensity is located at the position
X/L = 0.5 (i.e. at t/tc = 0.5), the order parameter field is non-uniform, with the lowest values
occurring in a small region located at the top of the beam, thus causing the appearance of a
hinge-like deformed area (figure 5c); it must be noted that the hinged region is placed behind
the maximum light intensity position because of the heat diffusion delay with respect to light
diffusion.

Finally, when the light reaches the end of the beam (t/tc = 1), since the heat diffusion leads
to an almost uniform temperature in the element, the order parameter is nearly constant in the
vertical direction and no bending of the beam takes place (figure 5d).
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configurations at t/tc = 0.5 (d– f ) and at t/tc = 1 (g,h,i).

(c) Response of a light-driven monodomain liquid crystalline elastomer element under a
static light source with different intensity distributions

In this example, we investigate the effect of the spatial distribution of the light intensity on
the morphing response of an LCE cantilever beam. The thermal conductivity of the material
is λT = 0.2 W mK−1. The light source is assumed to be at rest, with a maximum intensity
I0 = 200 mW cm−2 placed at the middle of the element for the whole thermo-mechanical process
whose duration is tc = 20 s. The response of the LCE element is studied by adopting three different
values of the parameter defining the amplitude of the light intensity Gaussian distribution,
namely d2 = 10−3;10−5;10−6 m−2, figure 6a–c. The corresponding deformed shapes of the middle
line of the LCE element are shown in figure 6d–f (at t/tc = 0.5) and in figure 6g–i (at t/tc = 1); the
maps of the temperature and of the dimensionless order parameter, plotted on the undeformed
configurations of the LCE element, are also reported in the figure.

In the case characterized by d2 = 10−3 m−2 (the highest value considered), the Gaussian
distribution is nearly constant along the upper boundary of the LCE element, i.e. I(x)/I0 ∼=
1, ∀x ∈ [0, L], figure 6a. This corresponds to a uniform distribution of the light intensity along
the LCE element, while the light intensity decreases through the element thickness because of
the material’s absorbance. Correspondingly, during the transient heat transfer phenomenon, a
layered distribution of the temperature and of the order parameter across the height of the
element take place, see maps in figure 6d,g. These fields are responsible for the morphing of
the LCE element which shows a nearly uniform bending at t/tc = 0.5, figure 6d, while it tends
to simply contract at t/tc = 1 when the heat diffusion leads to a nearly homogeneous temperature
and order parameter fields, figure 6g (see §6a).
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In the case d2 = 10−5 m2, the amplitude of the Gaussian distribution is lower with respect to the
case characterized by d2 = 10−3 m−2, figure 6b. The temperature increase and the corresponding
decrease of the order parameter take place locally, i.e. close to the location of the maximum light
intensity, see maps in figure 6e,h. This induces the formation of a localized region having a non-
uniform distribution of the temperature and of the order parameter, the latter being responsible
for the bending deformation as shown in figure 6e,h (a highly deformed hinge-like region
appears). Differently from the previous case where the LCE element was characterized by uniform
bending, the presence of the hinge-like deformed region induces an actuation characterized by
two nearly straight (undeformed) parts rotating about such a hinge centrepoint.

The results corresponding to the case d2 = 10−6 m2 (narrowest light intensity distribution) are
similar to the previous one but with a narrower width of the hinge-like region. In this case, the
temperature in the material is lower than in the previous cases due to the more localized light
intensity, and a longer time is required to heat up the whole domain. No deformation of the
LCE element can be appreciated at t/tc = 0.5 (figure 6f ), while bending occurs at t/tc = 1 due to
the presence of a narrower (compared to the case d2 = 10−5 m2, figure 6i), hinge-like deformed
region.

7. Conclusion
The multi-physics phenomena involved in the deformation of LCEs, whose actuation comes from
the reversible switching from an isotropic to an ordered state triggered by light-induced heating,
has been considered. The change of the order tensor, expressing the nematic order orientation,
has been related to the so-called chain distribution tensor and its variation upon mechanical
deformation and thermal-induced phase transformation have been quantified. The knowledge
of the nematic–isotropic transition temperature allows us to determine the chain orientation
distribution and, consequently, the deformation and the stress state of the material.

Light-induced actuation represents an interesting stimulus enabling us to obtain untethered
actuators, whose response can be finely tuned through light control. Within this context, we
have considered the generation of internal heat induced by an external light source due to
the presence of photo-thermal particles embedded in the material. The involved multi-physics
landscape requires the light diffusion and heat transfer phenomena, as well as the mechanics of
the phase transition taking place in LCEs, to be properly described.

The lack of temperature uniformity has been shown to induce a bending-like deformation
of the material, despite the mesogen units being aligned along a single preferential direction.
Further investigations could elucidate the role played by the material absorbance on the time
rate of the generated heat, enabling us to tune the actuation speed. Moreover, the change of
the LCE optical properties during the thermo-mechanical process should also be investigated:
understanding the absorbance-order parameter relationship will enable us to further exploit LCEs
to obtain intriguing actuation capabilities.

The illustrated multi-physics theory has been implemented in an FE framework and several
numerical examples have been performed to clarify the role of the main parameters involved,
such as the thermal conductivity of the material, the light intensity distribution and the light
speed when a moving source is considered.

A deep understanding and the availability of precise and efficient physics-based simulation
tools, enable harnessing and optimizing the nematic arrangement through a precise material
microstructure control, nowadays easily obtainable by advanced three-dimensional printing
technologies. The inverse approach allows designing LCE-based elements and devices whose
response, induced by suitable external stimuli, can be precisely tuned through proper mesogens
arrangement patterns as well as cross-link density distribution within the material. This approach
paves the way to the development of materials by designing their molecular scale structure, a
strategy that offers an extremely wide design space for the optimization and the development of
new devices with unprecedented responsive capabilities.
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