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A B S T R A C T   

Fused Deposition Modeling (FDM), also known as material extrusion, is currently one of the most 
popular Additive Manufacturing (AM) technology on the market. In this study, two commercial 
FDM printers (Prusa i3 MK3 and WN400 3D Platform) were used for layer-by-layer 
manufacturing of polylactic acid (PLA) Dog Bone (DB) and Single Edge Notched Bend (SENB) 
specimens, aimed at investigating the influence of the manufacturing parameters on the tensile 
and fracture properties of PLA elements obtained by FDM technology. The effects of growing 
direction (horizontal and vertical), building orientation (0◦, 45◦ and 90◦), printer type, layer 
thickness (0.15 and 0.40 mm), specimen thickness (4 and 10 mm) and filament color (purple, 
white, black, gray, red, orange) are discussed in detail. Tensile tests were performed on DB 
specimens, while fracture mechanics tests on SENB specimens. Both the tensile and fracture 
properties of FDM 3D-printed PLA specimens have been found to be dependent on the investi-
gated manufacturing parameters. From the microstructural analyses of the SENB fracture sur-
faces, it has been observed that the fracture mechanisms and crack propagation is a step-wise 
process. Finally, the material properties charts (Young’s modulus and mode I fracture toughness 
versus tensile strength) are plotted.   

1. Introduction 

Additive manufacturing (AM) is a process in which components are created layer-by-layer on a special platform through computer- 
aided design (CAD) and manufacturing and enables the production of components with a complex geometry. The AM technology is 
able to print almost any material (e.g. metals and their alloys, ceramics, polymers, biological materials, etc.), offering a wide range of 
products in different ranges of engineering applications, such as the automotive, aerospace, civil, medical, energy, sport industries 
[1–4]. AM technology can be classified into different manufacturing processes including selective laser sintering (SLS), stereo-
lithography (SLA), power fused deposition modeling (FDM), bed and inkjet head 3D printing (PIP) and liquid frozen deposition 
manufacturing (LFDM) [5]. 

The FDM technology, one of the most widely used in additive manufacturing, is based on the extrusion technique; its success is 
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mainly due to its cost-effective way of printing and the ease of obtaining parts [6–8]. In FDM process, the 3D printing machine contains 
a plastic wire spool feeding a print head (nozzle) which extrudes a thin filament of melted plastic, forming, layer-by-layer according to 
a CAD file, the final component [9–11]. A wide range of plastic materials like polylactic acid (PLA), polycarbonate (PC), acrylonitrile 
butadiene styrene (ABS), polyphenysulfone (PPS), polyethyleneterephthalate (PET) and polyamide (PA) can be used for printing 
[12,13]. 

Wang et al. [14] and Feng et al. [15] investigated the mechanical properties of the parts obtained by AM technology. Previous 
researches have shown that the main process parameters influencing the mechanical properties are the raster orientation, and the layer 
thickness and nozzle temperature [16–18]. It was also observed that, in addition to the mentioned printing parameters, the color of the 
filament, the infill type, the building orientation and the printing direction have all a major influence on the tensile properties of PLA 
parts [19–21]. In addition, several studies have reported that FDM components manufactured by using PLA filaments show properties 
comparable to those made of bulk PLA [18,20–22]. The investigation of the tensile behavior of PC and ABS parts aimed at determining 
the degree of the anisotropy in 3D printed components, was carried out by Cantrell et al. [23]. They found that the raster orientation of 

Nomenclature 

a Crack length 
ABS Acrylonitrile Butadiene Styrene 
AFPB Asymmetric Four Point Bending 
AM Additive Manufacturing 
a/W Crack length ratio 
b Width of the DB specimen in corrispondence of the narrower section 
bg Width of the DB specimen in the grip area 
B Thickness of the SENB specimen 
CAD Computer-Aided Design 
CF Carbon Fiber 
CLSM Confocal laser scanning microscopy 
DB Dog-Bone 
E Young’s modulus 
FDM Fused Deposition Modeling 
fI(a/W) Mode I geometry factor 
fII(a/W) Mode II geometry factor 
h Specimen’s width 
KI Mode I stress intensity factor 
KII Mode II stress intensity factor 
KIC Mode I fracture toughness 
KIIC Mode II fracture toughness 
LFDM Liquid Frozen Deposition Manufacturing 
L0 Gauge length of the DB specimen 
Lc Length of the narrower section of the DB specimen 
Lt Total length of the DB specimen 
MTS Maximum Tangential Stress 
P Applied load 
PA Polyamide 
PC Polycarbonate 
PET Polyethyleneterephthalate 
PLA Polylactic acid 
Pmax Maximum load 
PPS Polyphenysulfone 
Q Shear load 
R Radius of the DB specimen 
SENB Single Edge Notched Bend 
SFPB Symmetric Four Point Bending 
SLA Stereolithography 
SLS Selective Laser Sintering 
t Layer thickness 
W Height of the SENB specimen 
σ Normal stress 
σf Tensile strength 
τ Shear stress  
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the PC specimens lead to an anisotropic behavior, resulting in a directional variation of up to 20% of the strengths and elastic modulus. 
On the other hand, the authors observed that the values of Poisson’s ratio and Young’s modulus for ABS are slightly influenced by the 
raster and build orientation. Maloch et al. [24] investigated the influence of the layer thickness and extrusion nozzle type on the 
tensile/flexural modulus and tensile/flexural strength of 3D-printed ABS parts. They noticed that the small thicknesses of the layers 
allow to obtain the best mechanical properties. They also found that an increase in nozzle temperature provide better melting between 
adjacent layers. The effect of the layer orientation on modulus of rupture, tensile strength and impact resistance was investigated by Es- 
Said et al. [25]; the best properties were obtained for an orientation of 0◦ (with layers build along the length of the parts), while the 
weakest behavior for a 45◦one. In addition, the authors observed that the crack paths regularly occurred along the layer interface. 
Rodríguez-Panes et al. [26] investigated the tensile behavior (modulus of elasticity, tensile strength, tensile yield stress and rated 
tensile stress) of various PLA and ABS components produced by the FDM technique. Specimens made of PLA were found to be stiffer 
and with higher tensile strength than ABS. On the other hand, the results obtained with ABS showed a lower variability than those 
obtained with PLA. Warnung et al. [27] studied the mechanical behavior of eight types of FDM printed component; it was found that 
PA components exhibited the best strength properties, while the stiffest component was produced using a carbon fiber (CF) reinforced 
PET. 

Due to its superior strength/stiffness properties, bio-based, bio-compostable, and bio-compatibility PLA thermoplastic elements are 
widely used in various advanced applications. Nonetheless, in addition to the high strength and stiffness of this polymeric material, its 
brittle behavior have been shown to limit its lifespan [28]. Due to all the above-mentioned properties, PLA material is nowadays the 
most used in FDM printing. A reliable and confident use of PLA elements thus requires the mechanical properties to be precisely 
known; among them, the fracture toughness of the components made of this material is an important parameter to study. In addition to 
strength properties, Ahmed and Susmel [29,30], Arbeiter et al. [31] and Seiber et al. [32] determined the fracture properties of PLA 
specimens. However, the literature reports only a few results for mode II and mixed mode fracture toughness of PLA parts [10,33]. 

The Single Edge Notched Bend (SENB) was adopted for the determination of Mode I and Mode II fracture toughness using a 
symmetric and an asymmetric loading configurations, respectively [34]. Particularly, the asymmetric loading was employed to 
determine mode II fracture toughness for different types of brittle materials [35] such as concrete [36], granite [37,38], wood [39], 
polyurethane foam [40–42], extruded polystyrene [43], polyamide [16], bi-material PMMA-Aluminum [44]. 

Starting from the published data, which are often affected by some ambiguities related to the influence of certain process pa-
rameters [11,18,45–47] on tensile and fracture toughness properties, this paper experimentally investigates the tensile and fracture 
properties of PLA printed specimens. In particular, this study considers the assessment of the mode II fracture toughness, a parameter 
not yet investigated in the literature, of FDM printed PLA elements. 

2. Manufacturing process 

The test specimens were fabricated via FDM using two different printers namely Prusa® i3 MK3 printer [48] and WN400 3D 
Platform® printer [49]. The G-codes for FDM process were generated with the help of slicer Ultimaker® Cura 4.2.1 which results to be 
compatible with both the adopted printers; this allows obtaining more comparable specimens for sake of experimental results com-
parison. The constant process parameters for fabricating the test specimens are provided in Table 1. It should be noted that Pusament 
PLA filament (manufacturer PRUSA) of two different diameters (1.75 and 2.85 mm) were used for Prusa and 3D platform printers. It 
should be noted that the main goal of the current research is not to perform a direct comparison of the two utilized printers, as few 
process parameters (i.e. nozzle diameter and layer thickness are different) are not identical when producing samples using the two 
printers (see Table 1). As reported by Dawoud et al. [50], the raster angle of + 45◦/− 45◦ for the FDM parts can result in higher 
mechanical and fracture resistance, hence, in the current research this raster orientation was selected for fabrication of the specimens. 
A nominal infill density of 100% was defined for all test specimens in order to approach as closely as possible the continuous material. 
To assess the effect of printing angle (in-plane angle on the build platform), different building angles equal to 0◦, 45◦, and 90◦ were 
considered. All the printed specimens were fabricated through the thickness for producing SENB specimens, while both through the 
thickness and through the width printing have been assumed for preparing SENB specimens. 

For the tensile and fracture experiments, dog-bone (DB) and single edge notch bend (SENB) specimens were prepared, respectively. 
Fig. 1 illustrates the basic features of these two geometries. To compare the fracture resistance of the FDM parts in as-fabricated 
condition and in the case where the crack is introduced to the bulk material, two different sets of SENB specimens were consid-
ered. In the first type of SENB specimens, the notch was introduced in the CAD model which was used for FDM fabrication. In this case, 

Table 1 
Process parameters for manufacturing test specimens for tensile tests by using the two different printers.  

Process parameter Prusa® i3 MK3 3D Platform® WN400 

Nozzle diameter 0.4 mm 1 mm 
Infill density 100% 100% 
Nozzle temperature 220 ◦C 220 ◦C 
Bed temperature 60 ◦C 60 ◦C 
Raster angle +45◦/-45◦ +45◦/-45◦

Build direction Flat, printed through 
the thickness 

Flat, printed through 
the thickness 

Layer thickness 0.15 mm 0.40 mm  
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the notch geometry has been introduced throughout the thickness and the two outer walls surround the notch area as well as the rest of 
the circumference. 

In the second type of SENB specimens, prisms with the same global dimensions as the SENB specimens were fabricated and the 
notch geometry was introduced by milling by using a tool of 0.6 mm thickness (see Fig. 1b). During the milling process, the coolant was 
continuously used to prevent excessive heating of the specimen in order to reduce the change of melting and prevent recrystallization 
in the notched area. Microscopic investigation of the notch tip show similar shape and dimensions of the notch for both printed and 
milled notch, the only difference is that for printed notch the contour of the specimen is continuum, while for the milled one the 
deposited filaments in the notch area are cut. 

3. Experimental investigations 

3.1. Tensile tests 

Tensile tests were performed on the 5 kN Zwick Proline Z005 testing machine, with the exception of 10 mm thick specimens which 
were tested on the 100 kN A009 (TC100) computerized electromechanical universal testing machine (LBG srl®). All quasi-static tests 

Fig. 1. Schematic illustration of PLA-FDM specimens: DB (a) and SENB (b) specimens.  

Fig. 2. Printing direction and orientation: Horizontal (through the thickness) (a) and Vertical (through the width) (b) growing.  
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were carried out at room temperature under displacement control, with a displacement rate of 2 mm/min. Clip-on extensometers with 
30 mm measuring length were used to record the displacements used to calculate the Young modulus, in accordance with ISO 527–1 
standard [51]. The tensile strength was estimated by dividing the maximum load to the cross section of the DB specimen. Five 
specimens were tested for each set of manufacturing parameters. The reported results are the average values. 

3.1.1. Effect of growing direction and orientation 
Two growing directions of horizontal (Fig. 2a) and vertical (Fig. 2b) were considered for fabrication of the test specimens. For each 

direction three orientations of 0◦, 45◦ and 90◦ were considered. 
Typical load–displacement curves recorded during tensile testing are shown in Fig. 3. A quasi-brittle fracture can be observed for 

the specimens grown in the vertical direction (through the width) and in the horizontal direction (through the thickness) for 45◦

orientation. Specimens printed in the horizontal plane and with an orientation of 0◦ and 90◦ displayed a softening behavior after the 
maximum load. 

The results of Young modulus and tensile strength obtained for the specimens manufactured with Prusa printer for specimens with a 
thickness of 4 mm, and width of 10 mm are shown in Fig. 4. Higher Young modulus values were obtained for all three considered 
orientations for the vertical grown specimens; compared with the values related to the horizontal ones, it has been found an increase of 
about 3.6% for 45◦ orientation and approximately 6% higher for 0◦ orientation. Also, it could be observed that Young modulus values 
are not significantly influenced by the orientation, the results are in the scatter of experimental determination for both horizontal and 
vertical directions. 

The tensile strength is higher for the horizontal grown specimens, with an increase of about 2.1% for 45◦ orientation and 8.8% for 
90◦ orientation with respect to the vertical ones. 

Broken DB specimens after tensile tests for both vertical and horizontal growing directions are shown in Fig. 5. It could be observed 
that the fracture plane for horizontal growing direction is at 45◦ for 0 and 90◦ specimen orientation, while for the 45◦ specimen the 
orientation the fracture surface is normal to the loading direction. In the case of vertical growing direction, the fracture plane is normal 
to the loading direction for all growing orientations (0◦, 45◦ and 90◦). 

The fracture planes of the DB specimens are directly related to the orientation of the printed layers with respect to the loading 
direction. The 3D printed specimens were investigated after tensile tests using Confocal Laser Scanning Microscopy (CLSM). The 
specimens were oriented up in order to be evaluated using 3D measuring laser microscope (Lext OLS400, Olympus, Japan) for 3D 
characterization of the fracture surfaces. The scanning was performed at 50X magnification and the investigated areas were about 2.3 
mm3. A detailed optical 3D profiles of the fracture zones are shown in Fig. 6. The images are taken from the fracture area of the DB 
specimens and perpendicular to the loading direction. 

3.1.2. Effect of printer, layer and specimen thicknesses 
Identical specimens geometries, characterized by a thickness equal to 4 and 10 mm, layer thickness of 0.15 mm (Prusa printer) and 

0.40 mm (3D Platform printer), respectively, were manufactured by using the two above-mentioned printers. For this study, specimens 
made of black color filament grown horizontally have been prepared. A comparison of the mechanical properties in term of the Young 
modulus is shown in Fig. 7a, while the tensile strength is shown in Fig. 7b. It can be observed that the Young modulus increases with the 
specimen thickness; further, for both thicknesses higher values of approximately 7.6% were obtained for the specimens printed on 3D 
platform. Higher tensile strength values (+10.4% for specimens with 4 mm thickness and + 5.2% for specimens with 10 mm thickness) 
were obtained for Prusa printer. The tensile strength values on thicker specimens resulted to be higher of about 12% for Prusa printer, 
while an increase of 17.4% was observed for 3D Platform printer. 

3.1.3. Effect of filament color 
Different filament colors were considered for horizontal specimens grown at 0◦ orientation. The Young modulus and tensile 

strength results are shown in Fig. 8, where some results from the literature are also reported [52]. It can be observed that the maximum 
Young modulus was obtained for red specimens 3379.8 MPa, while the minimum one, equal to 2855.0 MPa, was obtained for the 
orange specimens. The highest values of tensile strength, resulted to be above 50 MPa, were observed for purple and red specimens, 

Fig. 3. Load - displacement curves obtained from the tensile tests: horizontal (a) and vertical (b) growing direction.  

L. Marșavina et al.                                                                                                                                                                                                    



Engineering Fracture Mechanics 274 (2022) 108766

6

Fig. 4. The influence of growing direction and orientation on the Young modulus (a) and tensile strength (b) properties. Both average values and 
standard deviations are illustrated. 

Fig. 5. Fractured DB specimens after tensile tests for vertical (a) and horizontal (b) growing directions.  
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while the minimum value of 39.01 MPa was observed for the white specimens. However, further investigations into chemical 
composition of the coloring agent is required to accurately link the mechanical properties to the color of the PLA filament. 

3.2. Fracture toughness tests 

The single edge notch bend specimens (SENB) were considered for fracture toughness tests, Table 2. The specimens used for the 
fracture toughness tests presented two filament colors: black (10 mm thick specimens) and gray (6 mm thick specimens). In some of the 
specimens, the notch was created by during the 3D printing process itself, while for the un-notched specimen the notch was inserted by 
milling, Fig. 1b. 

The fracture toughness tests were carried out at room temperature (22 ◦C) with a 10 kN Walter + bay hydraulic machine in 
displacement control with a 2 mm/min displacement rate. The mode I fracture toughness, KIC, was determined using a Symmetric Four 
Point Bending (SFPB) configuration (Table 2a), while for the mode II fracture toughness, KIIC, Asymmetric Four Point Bending (AFPB) 
specimens were considered (Table 2b). 

The KIC and KIIC values were determined using the maximum load recorded during tests, Pmax, according to Equations (1) and (4) 
from Table 2 [53,54]. 

For each set of manufacturing parameters and loading configuration, five specimens were tested. All the results presented below 
concerning the fracture toughness, represent the average value of the five tested specimens. 

For investigating the influence of the printing direction, the specimens were printed horizontally on three directions of 0◦, 45◦ and 
90◦ (see Fig. 9). 

Typical load–displacement curves obtained on SENB specimens for both SFPB and AFPB loadings are plotted in Fig. 10. The fracture 
toughness results under mode I and mode II loading conditions for different printing directions are shown in Fig. 11. It could be 
observed from Fig. 11 that for both modes of fracture the values of fracture toughness are higher for 0◦ orientation, followed by the 90◦

ones and the lower values correspond to 45◦ orientation. This trend could be observed also for the work of fracture for Mode I loading. 
On contrary for Mode II the highest work of fracture was observed for 45◦ direction. This could be explained by the influence of the 
raster angle on the plastic deformation around the crack tip. 

The fracture paths, starting from the notch root, are presented in Fig. 12 for mode I and mode II loading. For 0◦ (Fig. 12a) and 90◦

(Fig. 12c) orientations and mode I loading, the crack initiates along the notch for the first two printing layers (outer walls), and then 
kink at 45◦ following the raster angle. For mode I loading and 45◦ orientation, the crack initiates and propagates along the notch 
bisector line. Mode II loading shows an inclined crack initiation, followed by a propagation along the raster angle. A higher fracture 
process zone could be observed for Mode II loading and printing orientation 45◦ (Fig. 12e), which could explain the higher value of the 
work of fracture for this case. 

The fracture planes of the SENB specimens, observed for different loading modes (mode I and mode II) and growing orientations are 
shown in Fig. 13. It can be seen that the fracture surfaces of the specimens highlights different profiles depending on the above- 
mentioned parameters. A detailed optical 3D profiles of the fracture zones are shown in Fig. 6. The flattest fracture surfaces are 

Fig. 6. Fracture planes of DB specimens for vertical (through the thickness) (a) and horizontal (through the width) (b) growing direction.  
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obtained for a printing orientation at 45◦, while the other two printing directions (0◦ and 90◦) have quite irregular profiles. In fact, 
these optical profiles reinforce the shape of the fracture paths obtained at the macroscopic level (see Fig. 12). 

The experimental result for the considered manufacturing parameters, the two printers (Prusa and 3D platform) printing layers of 
0.15 mm and 0.40 mm, respectively, specimens with two different thicknesses 10 and 6 mm and two methods to insert the notch (by 3D 
printing or through mechanical cutting using milling), are presented in Table 3 for mode I fracture toughness and in Table 4 for mode II 
fracture toughness, respectively. The lowest value of the KIC was obtained for specimens with 3D printed notch on 10 mm thickness 
specimens, followed by the specimens with milled notch. The mode I fracture toughness for specimens obtained on 3D platform printer 
(0.4 mm layer thickness) are higher than those obtained on Prusa printer. The same tendency was observed for mode II fracture 
toughness (Table 4). Almost similar values of KIIC = 3 MPa⋅m0.5 were obtained on specimens manufactured on Prusa printer with 3D 
printed notch for different thicknesses (6 and 10 mm). The lowest KIIC was obtained for Prusa printed specimens with milled notch. 

From the results reported in Tables 3 and 4 it appears that a smaller specimen’s thickness results in higher fracture toughness, while 
using thinner layer entails a reduction of the fracture toughness because of the more numerous stress raiser sites induced by the 
alternating printed layers. On contrary with the tensile tests results where higher tensile strain was obtained for thicker specimens, we 
should notice that the thicker specimens are close to plain strain conditions, while the thinner ones are in plan stress conditions. 

Fig. 14 presents the influence of the fracture parameters on the ratio between mode II and mode I fracture toughness. It could be 
observed that KIIC/KIC ranges between 0.55 and 0.59 for 3D platform printer and between 0.57 and 0.74 for Prusa printer, respectively. 

4. Discussions and conclusions 

We have investigated the influence of some manufacturing parameters on the tensile and fracture properties of PLA specimens 

Fig. 7. Effect of DB specimen thickness and 3D printer on the Young modulus (a) and tensile strength (b) properties.  
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obtained via FDM technique. 
Higher stiffness was obtained for vertical growing direction, higher ultimate tensile strength was obtained for horizontal direction, 

respectively. Tensile tests results highlighted the influence of specimen orientation, layer thickness and filament color on Young 
modulus and tensile strength. 

According to the experimental results, the fracture resistance of specimens printed with different orientations is strongly dependent 
on the manufacturing parameters. In this scenario, the specimens printed with 45◦ orientation are characterized by a lower KIC values, 
while higher values were obtained for the specimens printed with 0◦ and 90◦ orientations. This behavior can be explained by having a 
clear understanding of the effect of the angle between the pre-crack in the specimens and the raster lines. This angle is equal to ± 45◦, 
0◦/90◦ and ± 45◦ for the printed SENB specimens with 0◦, 45◦, and 90◦ build orientations. Considering mode I loading for 0◦ and 90◦

orientations, if the crack tries to propagate along the bisector line it should break two sets of inclined fibers with ± 45◦ angles. On the 
other hand, if the crack propagates along 45◦ direction, there is only one set of fiber (half of the number of resistant fibers) preventing 
the crack growth. This can be the reason for crack propagation along the 45◦ direction in 0◦ and 90◦ specimens, and the 0◦ propagation 
direction for 45◦ specimens (see Fig. 10). 

Although the specimens are loaded under mode I, the presence of the inclined rasters in 0◦ and 90◦ specimens causes the crack path 
not to follow the same path as in an isotropic material. In this case, since the crack would like to propagate along the notch bisector line 
but is forced to follow the 45◦ raster, and due to the local mixed mode loading condition ahead of the crack tip, higher amount of plastic 
deformation is expected. This shielding effect results in higher load bearing capacity and also higher elongation at failure (see Fig. 8a). 

Regarding the 45◦ specimens with 0◦/90◦ angle between the rasters and the pre-crack, the crack propagation occurs along the 

Fig. 8. Effect of filament color on the Young modulus (a) and tensile strength (b) properties of PLA printed elements.  
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Table 2 
Schematic of SFPB and AFPB test and the KIC and KIIC relations [53].  
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Fig. 9. Printed SENB specimens on the three considered orientations (0◦, 45◦ and 90◦).  
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symmetric induced stress field in the specimens. In this case, the crack growth resistance is lower and it can be observed that the 
fracture happens at lower load and a lower elongation at failure is observed (see Fig. 8a). 

Dealing with mode II loading condition, the major difference in the tested cases is the elongation at failure, while the KIIC shown 
smaller variations among various cases. According to the Maximum Tangential Stress (MTS) criterion, the crack kinking angle for an 
isotropic material is about 70.5◦ [55]. Using the same argument as the mode I results, in the specimens where the angle between the 
maximum tangential stress and the raster angles is smaller, the crack resistance is expected to be lower. Considering an angle of 70.5◦

for the maximum tangential stress, this angle would be equal to 19.5◦ for 45◦ specimens and 25.5◦ for 0 and 90◦ specimens, resulting in 
slightly lower KIIC value for 45◦ specimens. 

The presence of the outer walls of the specimen is very important when it comes improving the mechanical properties. Regardless of 
the loading mode, in order the crack to growth inside the bulk material, it must break and propagate through these walls. When the 
notch is created by milling, the outer walls do not exist in the notch region, meaning that this barrier is removed, making for the crack 
easier to start propagating under a lower load level. This has resulted in lower fracture toughness values for the milled specimens (see 
Tables 3 and 4). One important point for the milled notches is the higher standard deviation for the fracture toughness observed in 
these specimens. The presence of the uniform outer wall is an element making the specimens be in almost same outer condition. 

By removing that wall, any factor can be amplified, and possibly large defects within the bulk material and changes of temperature 
during the milling can be responsible for a huge scattering of the measured quantities. 

By looking at the fracture surface (Figs. 6 and 13), a clear trend of the fiber failure can be observed; it can be appreciated that the 
fibers were the load bearing members in the specimens. In this scenario, having larger fibers for the same volume of the specimens, can 
improve the load bearing of the element. The fracture and crack propagation take place as a step-wise process. If in each step a thicker 
fiber has to be broken for the crack to propagate, it would require a higher applied load, which consequently results in a higher fracture 
toughness. The other possible explanation can be the crystallization taking place during and after the printing. Depending on the 

Fig. 10. Load-displacement curves for SFPB (a) and AFPB (b) fracture tests.  

Fig. 11. The influence of the specimen orientation on the KIC and..KIIC  
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printing speed, layer height and some other parameters, the heat history can be different in FDM parts. If the average induced heat 
(residual heat) in the larger parts has been higher, that could result in higher mechanical properties and better bonding of the layers. 

For a general overview of the interaction between the main mechanical and fracture properties of PLA components, a chart of the 
material properties – drawn according to [56] – are plotted in Fig. 15. In Fig. 15a the relationship between the Young modulus E and 
tensile strength σf (for the two different printers, specimen thicknesses and specimen orientations) together with the design lines: 
M1 = σ2

f /E, with M1 = 0.5MPa (solid line) and 1MPa (dotted line) is shown. 

Fig. 12. Fracture paths after mode I and mode II loading tests.  

Fig. 13. Fracture planes of SENB specimens for mode I (a) and mode (b) test.  
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Fig. 15b shows the fracture toughness-tensile strength relationship, together with the two design curves defined as M2 = KIC/σf and 

M3 = K2
IC/σf . The results related to the 3D platform fit well with the M3 equation (dotted line) for M3 = 1MPaÂ ⋅ m, while the ones 

from Prusa printer are in good agreement with the M2 equation (solid line) for M2 = 0.1m0.5. This correlations are also influences by 
the printing parameters, like different nozzle and layer sizes. 
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Table 3 
Mode I fracture toughness results.  

Number Manufacturing parameters KIC, [MPa⋅m0.5] 

Printer Notch 
manufacturing 

Layer thickness, t 
[mm] 

Specimen Thickness, h 
[mm] 

Printing orientation 
[◦] 

Average Standard 
deviation 

1 3D 
Platform 

3D printed  0.40 10 0  6.54  0.030 

2 3D 
Platform 

Milled  0.40 10 0  5.77  0.399 

3 Prusa 3D printed  0.15 10 0  4.07  0.202 
4 Prusa Milled  0.15 10 0  4.25  0.290 
5 Prusa 3D printed  0.15 6 0  4.69  0.350  

Table 4 
Mode II fracture toughness results.  

Number Manufacturing parameters KIIC, [MPa⋅m0.5] 

Printer Notch 
manufacturing 

Layer thickness, t [mm] Specimen 
Thickness, h [mm] 

Printing orientation [◦] Average Standard 
deviation 

1 3D Platform 3D printed  0.40 10 0  3.58  0.030 
2 3D Platform Milled  0.40 10 0  3.38  0.399 
3 Prusa 3D printed  0.15 10 0  3.00  0.201 
4 Prusa Milled  0.15 10 0  2.43  0.290 
5 Prusa 3D printed  0.15 6 0  2.98  0.083  

Fig. 14. Ratio between mode II and mode I fracture toughness for specimens obtained by using the two different printers and by considering printed 
and milled notches. 
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