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Abstract

Skin is the most extended organ in human body representing 16% of the total body weight with a surface extension up to 2 m2. From
a mechanical viewpoint, skin can be described by an hyperelastic membrane, particularly when computational modeling for in-
silico testing of reconstructive surgery procedures is needed. These procedures often involves complex topological manipulations
of the skin tissue in order to minimize post-operative scarring. In this paper, the simulation of reconstructive surgery procedures
is described by FE membrane models developed within the framework of finite strain elasticity (an hyperelastic incompressible
model for skin is adopted). An algorihm is presented to generally describe complex topologies of cutting and removing of material,
while suturing is enforced by suitable multi-point constraints along wound boundaries. The archetypal reconstructive surgery of the
Z-plasty is here considered, where a rotational transposition of resulting triangular flaps is involved, leading to severe stress/strain
localization and displacement discontinuities. The results are discussed in terms of key deformation parameters commonly used
to guide surgical decisions during reconstructive procedures. Apart from the direct applications to surgery of human skin, the
computational tool proposed can be used with reference to artifical materials (like for instance polymeric hydrogels produced with
advanced 3D printing technologies), whose mechanical behaviour resambles that of the natural skin tissue.
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1. Introduction

Skin is a soft tissue membrane covering the whole body, with different biological and mechanical functions, which
has a noticeable self-repair capacity. After damages, reconstructive processes on skin immediately activate in order to
restore the original integrity. Depending on the extension of the damage, the result may generate some defects. For
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instance, deep cut injuries or extended burn scars may lead to a contracted integument, which could hinder proper joint
movements. In both cases, surgical correction is suggested, and modern procedures can achieve high quality results.

Among the various procedures available today, Z-plasty, invented by Horner (1837) and improved by Berger
(1904), is the oldest one technique and it is highly effective with almost immediate results. It consists in a Z-shaped
incision creating two opposite triangular flaps which, after being delaminated from the underneath tissues, are trans-
posed and sutured in place. This procedure allows to elongate the central limb of about 70%, relaxing the contraction
along its direction significantly.

The operation is planned and performed directly on patients drawing the best fitting Z-shaped incision. The proce-
dure must take into account possible side effects due to final high stresses, such as blood flow reduction which can lead
to flaps necrosis (Gibson and Kenedi, 1967; Larrabee et al., 1984; Raposio et al., 2000). Despite doctors experience,
prognosis is not always clear and it is strongly dependent on the specific mechanical response of skin. Pioneering
experiments on this problem were conducted on dogs by Furnas and Fischer (1971), performing a series of Z-plasties
with different dimensions and configurations, and giving interesting relationships between wound closure tension and
Z limbs angles. However, beside the ethical issues of animal testing, the reliability of such results is weak as skin
properties may be different among species.

To overcome the above mentioned problems, in-silico testing of surgical procedures through the Finite Element
Method (FEM) is deemed to be a strong and reliable tool. Similar studies have been conducted to investigate the
mechanical behavior of simple skin wounds with different shapes of the boundary (Lott-Crumpler and Chaudhry,
2001; Flynn, 2010).

In this paper, a series of Z-plasty operations has been analyzed by the commercial FEM code ABAQUS, taking
into account the highly non-linear response of skin (Gibson and Kenedi, 1967) and its initial stress state (Borges
and Alexander, 1962), through the Ogden (1972) hyperelastic model. The process of flaps transposition and suturing
has been simulated applying a series of implicit kinematic constraints along the boundaries of the incision. Due to
the geometrical complexity of the operations, a preprocessing tool has been developed (Alberini et al., 2021) within
Matlabr environment, which includes an automeshing (Persson and Strang, 2004) tool, and an automatic algorithm
for kinematic constraint application.

2. Modeling and FEM implementation

Skin is a soft tissue membrane composed by three layers, namely, epidermis, dermis, and hypodermis, each one
with different mechanical characteristics and biological purposes. Epidermis is the outermost and thinnest layer, pro-
tecting the rest of the tissue from bacteria, chemicals and radiations (Martini and Nath, 2010). Just below, dermis gives
the skin its mechanical strength, being able to undergo large strains without damages. This layer is mainly constituted
by a matrix of collagen fibers, which uncrimples under tension, displaying a highly non linear response (Gibson and
Kenedi, 1967; Brown, 1973; Yang et al., 2015). Finally, hypodermis connects the upper layers with the underneath
tissues, such as muscles and bones, allowing large displacements under low tensions (Oxlund et al., 1988; Groves
et al., 2012). The overall mechanical behavior of skin is characterized by the dermis and epidermis, which can be
treated as a unique membrane.

In the following, finite strain continuum mechanics is briefly introduced as the fundamental tool to analyze bodies
undergoing large displacements. Then, the implementation of skin corrective surgeries into FE framework is discussed.

2.1. Continuum mechanics of membranes

Following the notation of Holzapfel (2000), let B be a material body in R3 moving from the space region Ω at time
t0 = 0 to ω at time t. A material point belonging to B moves from the position X to x according to the biunivocal
function x = χ(X, t) = X + u(X, t), where u is the displacement field. During the motion χ the body may undergo
deformations which can be described by the fundamental strain measure F = ∂x

∂X , also known as deformation gradient.
The polar decomposition leads to F = RU, where R is an orthogonal tensor representing a pure rotation, and U is
a pure stretch tensor, which admits the spectral decomposition in terms of principal stretches λa and principal basis
vectors N̂a, U = λaN̂a ⊗ N̂a. The volume ratio is given by the determinant of F, that is J = det(F) = λ1λ2λ3. As a
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further strain measure, the left Cauchy-Green is defined as C = FT F = U2, and admits the spectral decomposition as
well, C = λ2

aN̂a ⊗ N̂a.
Assuming skin as an hyperelastic, isotropic and homogeneous membrane, the constitutive relationship can be found

from a scalar valued strain-energy density function ψ = ψ(F) = ψ(C) in terms of second Piola-Kirchhoff stress S, with

S = 2
∂ψ(C)
∂C

. (1)

The Cauchy true stress tensor σ is obtained by means of the push forward operation on S, σ = J−1FSFT . Both stress
measures can be also written as S = S aN̂a ⊗ N̂a, σ = σan̂a ⊗ n̂a, with n̂a = RN̂a, where the principal stresses are
expressed as

S a =
1
λa

∂ψ

∂λa
, σa = J−1λa

∂ψ

∂λa
. (2)

Skin behavior is here described by the Ogden (1972) model, assuming the material as incompressible. The strain-
energy density function is defined as

ψ = ψo + ψp =

N∑
i=1

µi

αi

(
λαi

1 + λαi
2 + λαi

3 − 3
)
− p (J − 1) , (3)

where ψp = (J − 1) has been introduced to account for the incompressibility constrains, in which p is an unknown
hydrostatic pressure. This model is commonly used to describe the actual skin behavior due to its simplicity and
accuracy with just one series (N = 1) (Ogden et al., 2004; Shergold and Fleck, 2004; Groves et al., 2012). In plane
stress conditions the pressure p can be obtained explicitly by substituting Eq. (3) in Eq. (2) and imposing σ3 = 0.
Knowing that J = λ1λ2λ3 = 1, p turns out to be p =

∑N
i=1 µi(λ1λ2)−αi .

2.2. FE modeling

In silico testing of skin corrective surgeries are performed in three steps. First, the geometry of the cut is drawn
directly on the skin depending on the extension of the defect, and the amount of neighboring tissue. Then, the incision
is performed and skin is delaminated from subcutaneous tissues in a circular region underneath the cut, allowing flaps
to move and the tissue to rearrange under the induced deformations. Finally, flaps are transposed and the wound is
sutured. This procedure is rather complex and a precise simulation must include as much physical aspects as possible.

The domain considered includes the circular region of delaminated skin, which behaves as a free membrane, while
the surrounding skin, still connected to the underneath tissues, has been replaced with proper constraints around the
circular boundary ∂ΩE . The domain is taken sufficiently large, so that the operation has negligible effects on the
external boundary, which can therefore be considered fixed.

The internal boundary ∂ΩI , represented by the edges of the cut, has unknown boundary conditions. Skin flaps
undergo large displacements, and the consequent geometrical non-linearity makes the final configuration of the edges,
as well as the relative traction forces, an unknown of the problem. Thus, in order to simulate the process of wound
closure, the constraint must be given as an implicit kinematic equation, which progressively reduce to a vanishing
distance the material points along two approaching edges ∂ΩI− and ∂ΩI+ of the inner boundary, (∂ΩI− ∪ ∂ΩI+ = ∂ΩI ,
∂ΩI− ∩ ∂ΩI+ = ∅). Therefore, for every couple of points X− ⊂ ∂ΩI−, X+ ⊂ ∂ΩI+, in the reference configuration Ω, the
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Fig. 1. Approaching of two points X− ⊂ ∂ΩI−, X+ ⊂ ∂ΩI+.

final positions x− ⊂ ∂ωI− and x+ ⊂ ∂ωI+, respectively, must coincide (Figure 1). The implicit kinematic equation Φ

can be written as

Φ = x+ − x− = X+ + u(X+, t) − X− − u(X−, t) = 0, (4)

and it is applied continuously along the edges ∂ΩI−, ∂ΩI+. Accordingly, in order to preserve the integrity of the
material, every coupling (X−,X+) must be defined by a linear biunivocal function Γ : ∂ΩI+ → ∂ΩI−, such that
‖dX−‖ = c‖dX+‖, where c is the ratio between the total lengths of ∂ΩI− and ∂ΩI+.

Due to the discrete nature of FEM framework, Eq. (5) is applied on the nodes of the internal boundary, which
must be placed according to the function Γ. Moreover, the boundary of the wound may include several geometrical
discontinuities that require smaller elements for the discretization in their influence area. Therefore, nodes along the
inner boundary must be placed also according to the refinement rule for the elements mesh. In order to respect both
requirements, a code for automatic generation of FEM models has been developed in Matlabr environment, and
has been integrated with the open source automeshing code DistMesh (Persson and Strang, 2004). The code uses
3-node plane stress elements, and it is amenable to handle efficiently multiple geometrical parameters to generate
the optimal discretization. Furthermore, the code is capable to generate models for fairly different geometries of the
internal boundary (Alberini et al., 2021).

3. Z-plasty optimization

The classical Z-plasty is made by three incision of equal length, in which the lateral limbs are slanting 60◦ with
respect to the central one. Surgeons came up with this configuration during years of practice, but no mechanical
analysis demonstrated that this is the best configuration possible. Moreover, depending on the angles chosen for the
lateral limbs, even unsymmetrically, different final configuration can be achieved.
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(a) (b)

Fig. 2. (a) Z-plasty model scheme, and (b) combinations of angles α and β analyzed. The classical 60◦-60◦ Z-plasty is highlighted in cyan.

Therefore, in order to identify an optimal configuration of the operation, a series of Z-plasties is analyzed within
the FEM code ABAQUS, adopting different combination of slanting angles of the lateral limbs. The round region of
delaminated skin is characterized by a radius R = 200 mm, and a thickness t = 2 mm. The central incision limb, and
the lateral ones as well, is made with a length l = 5 mm, leaving a small gap s = 0.05 mm between the edges of the
cut, for numerical reasons (Figure 2a). The domain has been automatically discretized using an element dimension of
hmax = l/5, which reduces to hmin = l/150 near the geometrical discontinuities.

Generally, the angles used in practical surgery for a symmetric Z-plasty are α = β (Figure 2a) ranging from 30◦

to 60◦. For the optimization, this interval has been extended to 20◦ ≤ α, β ≤ 90◦, taking combinations of α and β
with step of 10◦. For symmetric reasons, only 36 combinations of 64 have been analyzed to save computational effort
(Figure 2b).

The material properties used are taken from an in-vivo measurement which provides µ1 = 110 Pa and α1 = 26
(Mahmud et al., 2013). To take into account the contracted skin, an anisotropic tension field is uniformly applied to
the domain considering the principal stretches λ0,1 = 1.05 and λ0,2 = 1.1 applied along the vertical and horizontal
directions, respectively, (Gambarotta et al., 2005). Accordingly, the initial stress tensor σ0 has been computed using
the principal stresses featuring in Eq. (2).

The performance of the operation is evaluated through the elongation ratio, defined by the ratio λAB between the
distance of the two cut extremes after (points A′ and B′, respectively) and before (points A and B, respectively) the
operation, namely λAB = A′B′

AB
. Results of Figure 4(a) show that λAB always increases with increasing angles α and

β. Despite this interesting property, higher values for α and β are not necessarily an appropriate choice. As shown in
Figure 3(a) and (b), wider angles generate increased deformations, and this could lead to the failure of skin flaps for
necrosis, due to the reduced blood flow (Gibson and Kenedi, 1967; Stell, 1980). The same problem may occur for low
angles α and β, since blood flow also depends on the width of the base of the flap, along which it remains connected to
the rest of the skin. Thus, in order to assess the elongation performances of each combination of angles, an efficiency

parameter ηAB is ruled out by penalizing the ratio λAB with the highest effective strain εe f f =

√
2
3 (ε2

1 + ε2
2) within the
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(a) (b)

Fig. 3. Principal strains deformation maps of the 36 moels. (a) maximum tensile principal strain, and (b) minimum compressive principal strain.

domain, and the sine of the lower angle between α and β (note that the area of each triangular flap turns out to be
proportional to this sine function), that is

ηAB =
λAB

εe f f ,max
sin(min(α, β)). (5)

The results, reported in Figure 4(b), show that for every fixed value of β the peek efficiency is achieved with α = β.
This feature is significantly helpful as the choice of the angles can be reduced to a single variable. In particular, the
combination α = β = 60◦ gives the highest elongation efficiency, and this justify its wide use in the common surgical
practice.

4. Conclusion

Z-plasty is an old surgical procedure performed to elongate contracted skin. This technique is still used today thanks
to its immediate relaxation effects, and speed of execution. The geometry of the cut is simple and can be performed
with different angles of the lateral Z-shaped limbs. The classical choice with equal angles of 60◦ has become a
standard, but this came up from years of experience instead of a mechanical-based justification. In the present work, a
geometrical optimization has been addressed, simulating the process of suturing on a series of Z-plasties with different
combinations of α and β angles, between 20◦ and 90◦, by means of the FE models. For this purpose, a Matlabr code
has been developed in order to efficiently generate the models. The code is capable to discretize complex domains with
localized mesh refinement, and automatically apply the suturing constraint along the inner boundary of the wound.
The analysis shows that the elongation ratio λAB, the key parameter to evaluate the elongation performance of the
operation, always increases with increasing angles α and β, but the optimal configurations, which minimize the risk of
necrosis, is achieved with α = β. In particular the combination α = β = 60◦ reaches the highest elongation efficiency,
confirming it as the best choice in common surgical practice.
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Fig. 4. Rresults of the different combinations α and β of the Z-plasty FE models. (a) elongation ratios λAB, and (b) elongation efficiency of Eq. 5,
ηAB.

Using the numerical model recently proposed by the first three authors (Alberini et al., 2021), further investigations
are under way by considering the simulation of Z-plasty in the skin membrane undergoing wrinkling deformations
(e.g. see the problem of wrinkling in thin metal foils in Bolzon et al. (2017a,b)).
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Borges, A.F., Alexander, J.E., 1962. Relaxed skin tension lines, z-plasties on scars, and fusiform excision of lesions. British Journal of Plastic

Surgery 15, 242–254. doi:10.1016/S0007-1226(62)80038-1.
Brown, I.A., 1973. A scanning electron microscope study of the effects of uniaxial tension on human skin. British Journal of Dermatology 89,

383–393. doi:10.1111/j.1365-2133.1973.tb02993.x.
Flynn, C., 2010. Finite element models of wound closure. Journal of Tissue Viability 19, 137–149. doi:10.1016/j.jtv.2009.10.001.
Furnas, D.W., Fischer, G.W., 1971. The Z-plasty: Biomechanics and mathematics. British Journal of Plastic Surgery 24, 144–160. doi:10.1016/

S0007-1226(71)80034-6.
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